
Computational
Intelligence
in Control

IDEA GROUP PUBLISHING

Masoud Mohammadian
Ruhul Amin Sarker

Xin Yao

TLFeBOOK

Computational
Intelligence

in
Control

Masoud Mohammadian, University of Canberra, Australia
Ruhul Amin Sarker, University of New South Wales, Australia

Xin Yao, University of Birmingham, UK

Hershey • London • Melbourne • Singapore • Beijing
IDEA GROUP PUBLISHING

TLFeBOOK

Acquisition Editor: Mehdi Khosrowpour
Senior Managing Editor: Jan Travers
Managing Editor: Amanda Appicello
Development Editor: Michele Rossi
Copy Editor: Maria Boyer
Typesetter: Tamara Gillis
Cover Design: Integrated Book Technology
Printed at: Integrated Book Technology

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2003 by Idea Group Inc. All rights reserved. No part of this book may be
reproduced in any form or by any means, electronic or mechanical, including photocopy-
ing, without written permission from the publisher.

Library of Congress Cataloging-in-Publication Data

Mohammadian, Masoud.
 Computational intelligence in control / Masoud Mohammadian, Ruhul Amin
Sarker and Xin Yao.
 p. cm.
 ISBN 1-59140-037-6 (hardcover) -- ISBN 1-59140-079-1 (ebook)
 1. Neural networks (Computer science) 2. Automatic control. 3.
Computational intelligence. I. Amin, Ruhul. II. Yao, Xin, 1962- III.
Title.
 QA76.87 .M58 2003
 006.3--dc21
 2002014188

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

TLFeBOOK

NEW from Idea Group Publishing

Excellent additions to your institution’s library! Recommend these titles to your Librarian!
To receive a copy of the Idea Group Publishing catalog, please contact (toll free) 1/800-345-4332,

fax 1/717-533-8661,or visit the IGP Online Bookstore at:
[http://www.idea-group.com]!

Note: All IGP books are also available as ebooks on netlibrary.com as well as other ebook sources.
Contact Ms. Carrie Stull at [cstull@idea-group.com] to receive a complete list of sources

where you can obtain ebook information or IGP titles.

• Digital Bridges: Developing Countries in the Knowledge Economy, John Senyo Afele/ ISBN:1-59140-039-2;
eISBN 1-59140-067-8, © 2003

• Integrative Document & Content Management: Strategies for Exploiting Enterprise Knowledge, Len Asprey
and Michael Middleton/ ISBN: 1-59140-055-4; eISBN 1-59140-068-6, © 2003

• Critical Reflections on Information Systems: A Systemic Approach, Jeimy Cano/ ISBN: 1-59140-040-6; eISBN
1-59140-069-4, © 2003

• Web-Enabled Systems Integration: Practices and Challenges, Ajantha Dahanayake and Waltraud Gerhardt
 ISBN: 1-59140-041-4; eISBN 1-59140-070-8, © 2003
• Public Information Technology: Policy and Management Issues, G. David Garson/ ISBN: 1-59140-060-0;

eISBN 1-59140-071-6, © 2003
• Knowledge and Information Technology Management: Human and Social Perspectives, Angappa Gunasekaran,

Omar Khalil and Syed Mahbubur Rahman/ ISBN: 1-59140-032-5; eISBN 1-59140-072-4, © 2003
• Building Knowledge Economies: Opportunities and Challenges, Liaquat Hossain and Virginia Gibson/ ISBN:

1-59140-059-7; eISBN 1-59140-073-2, © 2003
• Knowledge and Business Process Management, Vlatka Hlupic/ISBN: 1-59140-036-8; eISBN 1-59140-074-0, ©

2003
• IT-Based Management: Challenges and Solutions, Luiz Antonio Joia/ISBN: 1-59140-033-3; eISBN 1-59140-

075-9, © 2003
• Geographic Information Systems and Health Applications, Omar Khan/ ISBN: 1-59140-042-2; eISBN 1-59140-

076-7, © 2003
• The Economic and Social Impacts of E-Commerce, Sam Lubbe/ ISBN: 1-59140-043-0; eISBN 1-59140-077-5,

© 2003
• Computational Intelligence in Control, Masoud Mohammadian, Ruhul Amin Sarker and Xin Yao/ISBN: 1-59140-

037-6; eISBN 1-59140-079-1, © 2003
• Decision-Making Support Systems: Achievements and Challenges for the New Decade, M.C. Manuel Mora,

Guisseppi Forgionne and Jatinder N.D. Gupta/ISBN: 1-59140-045-7; eISBN 1-59140-080-5, © 2003
• Architectural Issues of Web-Enabled Electronic Business, Nansi Shi and V.K. Murthy/ ISBN: 1-59140-049-X;

eISBN 1-59140-081-3, © 2003
• Adaptive Evolutionary Information Systems, Nandish V. Patel/ISBN: 1-59140-034-1; eISBN 1-59140-082-1, ©

2003
• Managing Data Mining Technologies in Organizations: Techniques and Applications, Parag Pendharkar/
 ISBN: 1-59140-057-0; eISBN 1-59140-083-X, © 2003
• Intelligent Agent Software Engineering, Valentina Plekhanova/ ISBN: 1-59140-046-5; eISBN 1-59140-084-8, ©

2003
• Advances in Software Maintenance Management: Technologies and Solutions, Macario Polo, Mario Piattini and

Francisco Ruiz/ ISBN: 1-59140-047-3; eISBN 1-59140-085-6, © 2003
• Multidimensional Databases: Problems and Solutions, Maurizio Rafanelli/ISBN: 1-59140-053-8; eISBN 1-

59140-086-4, © 2003
• Information Technology Enabled Global Customer Service, Tapio Reponen/ISBN: 1-59140-048-1; eISBN 1-

59140-087-2, © 2003
• Creating Business Value with Information Technology: Challenges and Solutions, Namchul Shin/ISBN: 1-

59140-038-4; eISBN 1-59140-088-0, © 2003
• Advances in Mobile Commerce Technologies, Ee-Peng Lim and Keng Siau/ ISBN: 1-59140-052-X; eISBN 1-

59140-089-9, © 2003
• Mobile Commerce: Technology, Theory and Applications, Brian Mennecke and Troy Strader/ ISBN: 1-59140-

044-9; eISBN 1-59140-090-2, © 2003
• Managing Multimedia-Enabled Technologies in Organizations, S.R. Subramanya/ISBN: 1-59140-054-6; eISBN

1-59140-091-0, © 2003
• Web-Powered Databases, David Taniar and Johanna Wenny Rahayu/ISBN: 1-59140-035-X; eISBN 1-59140-092-

9, © 2003
• E-Commerce and Cultural Values, Theerasak Thanasankit/ISBN: 1-59140-056-2; eISBN 1-59140-093-7, ©

2003
• Information Modeling for Internet Applications, Patrick van Bommel/ISBN: 1-59140-050-3; eISBN 1-59140-

094-5, © 2003
• Data Mining: Opportunities and Challenges, John Wang/ISBN: 1-59140-051-1; eISBN 1-59140-095-3, © 2003
• Annals of Cases on Information Technology – vol 5, Mehdi Khosrowpour/ ISBN: 1-59140-061-9; eISBN 1-

59140-096-1, © 2003
• Advanced Topics in Database Research – vol 2, Keng Siau/ISBN: 1-59140-063-5; eISBN 1-59140-098-8, ©

2003
• Advanced Topics in End User Computing – vol 2, Mo Adam Mahmood/ISBN: 1-59140-065-1; eISBN 1-59140-

100-3, © 2003
• Advanced Topics in Global Information Management – vol 2, Felix Tan/ ISBN: 1-59140-064-3; eISBN 1-

59140-101-1, © 2003
• Advanced Topics in Information Resources Management – vol 2, Mehdi Khosrowpour/ ISBN: 1-59140-062-7;

eISBN 1-59140-099-6, © 2003

TLFeBOOK

Computational
Intelligence
in Control

Table of Contents

Preface .. vii

SECTION I: NEURAL NETWORKS DESIGN, CONTROL AND
ROBOTICS APPLICATION

Chapter I. Designing Neural Network Ensembles by Minimising
Mutual Information ... 1

Yong Liu, The University of Aizu, Japan
Xin Yao, The University of Birmingham, UK
Tetsuya Higuchi, National Institute of Advanced Industrial
 Science and Technology, Japan

Chapter II. A Perturbation Size-Independent Analysis of
Robustness in Neural Networks by Randomized Algorithms 22

C. Alippi, Politecnico di Milano, Italy

Chapter III. Helicopter Motion Control Using a General
Regression Neural Network ... 41

T. G. B. Amaral, Superior Technical School of Setúbal - IPS
 School, Portugal
M. M. Crisóstomo, University of Coimbra, Portugal
V. Fernão Pires, Superior Technical School of Setúbal - IPS
 School, Portugal

Chapter IV. A Biologically Inspired Neural Network Approach to
Real-Time Map Building and Path Planning 69

Simon X. Yang, University of Guelph, Canada

TLFeBOOK

SECTION II: HYBRID EVOLUTIONARY SYSTEMS FOR
MODELLING, CONTROL AND ROBOTICS APPLICATIONS

Chapter V. Evolutionary Learning of Fuzzy Control in
Robot-Soccer ... 88

P.J. Thomas and R.J. Stonier, Central Queensland University,
 Australia

Chapter VI. Evolutionary Learning of a Box-Pushing Controller ... 104
Pieter Spronck, Ida Sprinkhuizen-Kuyper, Eric Postma and
 Rens Kortmann, Universiteit Maastricht, The Netherlands

Chapter VII. Computational Intelligence for Modelling and
Control of Multi-Robot Systems ... 122

M. Mohammadian, University of Canberra, Australia

Chapter VIII. Integrating Genetic Algorithms and Finite Element
Analyses for Structural Inverse Problems 136

D.C. Panni and A.D. Nurse, Loughborough University, UK

SECTION III: FUZZY LOGIC AND BAYESIAN SYSTEMS

Chapter IX. On the Modelling of a Human Pilot Using Fuzzy
Logic Control ... 148

M. Gestwa and J.-M. Bauschat, German Aerospace Center,
 Germany

Chapter X. Bayesian Agencies in Control .. 168
Anet Potgieter and Judith Bishop, University of Pretoria,
 South Africa

SECTION IV: MACHINE LEARNING, EVOLUTIONARY
OPTIMISATION AND INFORMATION RETRIEVAL

Chapter XI. Simulation Model for the Control of Olive Fly
Bactrocera Oleae Using Artificial Life Technique 183

Hongfei Gong and Agostinho Claudio da Rosa, LaSEEB-ISR,
 Portugal

TLFeBOOK

Chapter XII. Applications of Data-Driven Modelling and
Machine Learning in Control of Water Resources 197

D.P. Solomatine, International Institute for Infrastructural,
 Hydraulic and Environmental Engineering (IHE-Delft),
 The Netherlands

Chapter XIII. Solving Two Multi-Objective Optimization
Problems Using Evolutionary Algorithm .. 218

Ruhul A. Sarker, Hussein A. Abbass and Charles S. Newton,
 University of New South Wales, Australia

Chapter XIV. Flexible Job-Shop Scheduling Problems: Formulation,
Lower Bounds, Encoding and Controlled Evolutionary Approach .. 233

Imed Kacem, Slim Hammadi and Pierre Borne, Laboratoire
 d’Automatique et Informatique de Lille, France

Chapter XV. The Effect of Multi-Parent Recombination on
Evolution Strategies for Noisy Objective Functions 262

Yoshiyuki Matsumura, Kazuhiro Ohkura and Kanji Ueda, Kobe
 University, Japan

Chapter XVI. On Measuring the Attributes of Evolutionary
Algorithms: A Comparison of Algorithms Used for Information
Retrieval .. 279

J.L. Fernández-Villacañas Martín, Universidad Carlos III, Spain
P. Marrow and M. Shackleton, BTextract Technologies, UK

Chapter XVII. Design Wind Speeds Using Fast Fourier Transform: A
Case Study ... 301

Z. Ismail, N. H. Ramli and Z. Ibrahim, Universiti Malaya,
 Malaysia
T. A. Majid and G. Sundaraj, Universiti Sains Malaysia,
 Malaysia
W. H. W. Badaruzzaman, Universiti Kebangsaan Malaysia,
 Malaysia

About the Authors .. 321

Index ... 333

TLFeBOOK

Preface

vii

This book covers the recent applications of computational intelligence tech-
niques for modelling, control and automation. The application of these techniques
has been found useful in problems when the process is either difficult to model or
difficult to solve by conventional methods. There are numerous practical applica-
tions of computational intelligence techniques in modelling, control, automation,
prediction, image processing and data mining.

Research and development work in the area of computational intelligence is
growing rapidly due to the many successful applications of these new techniques
in very diverse problems. “Computational Intelligence” covers many fields such as
neural networks, (adaptive) fuzzy logic, evolutionary computing, and their hybrids
and derivatives. Many industries have benefited from adopting this technology.
The increased number of patents and diverse range of products developed using
computational intelligence methods is evidence of this fact.

These techniques have attracted increasing attention in recent years for solv-
ing many complex problems. They are inspired by nature, biology, statistical tech-
niques, physics and neuroscience. They have been successfully applied in solving
many complex problems where traditional problem-solving methods have failed.
These modern techniques are taking firm steps as robust problem-solving mecha-
nisms.

This volume aims to be a repository for the current and cutting-edge applica-
tions of computational intelligent techniques in modelling control and automation,
an area with great demand in the market nowadays.

With roots in modelling, automation, identification and control, computa-
tional intelligence techniques provide an interdisciplinary area that is concerned
with learning and adaptation of solutions for complex problems. This instantiated
an enormous amount of research, searching for learning methods that are capable
of controlling novel and non-trivial systems in different industries.

This book consists of open-solicited and invited papers written by leading
researchers in the field of computational intelligence. All full papers have been
peer review by at least two recognised reviewers. Our goal is to provide a book

TLFeBOOK

viii

that covers the foundation as well as the practical side of the computational intel-
ligence.

The book consists of 17 chapters in the fields of self-learning and adaptive
control, robotics and manufacturing, machine learning, evolutionary optimisation,
information retrieval, fuzzy logic, Bayesian systems, neural networks and hybrid
evolutionary computing.

This book will be highly useful to postgraduate students, researchers, doc-
toral students, instructors, and partitioners of computational intelligence techniques,
industrial engineers, computer scientists and mathematicians with interest in mod-
elling and control.

We would like to thank the senior and assistant editors of Idea Group Pub-
lishing for their professional and technical assistance during the preparation of this
book. We are grateful to the unknown reviewers for the book proposal for their
review and approval of the book proposal. Our special thanks goes to Michele
Rossi and Mehdi Khosrowpour for their assistance and their valuable advise in
finalizing this book.

We would like to acknowledge the assistance of all involved in the collation
and review process of the book, without whose support and encouragement this
book could not have been successfully completed.

We wish to thank all the authors for their insights and excellent contributions
to this book. We would like also to thank our families for their understanding and
support throughout this book project.

M. Mohammadian, R. Sarker and X. Yao

TLFeBOOK

TLFeBOOK

SECTION I:

NEURAL
NETWORKS

DESIGN, CONTROL
AND ROBOTICS
APPLICATION

TLFeBOOK

Designing Neural Network Ensembles 1

Chapter I

Designing Neural Network
Ensembles by Minimising

Mutual Information
Yong Liu

The University of Aizu, Japan

Xin Yao
The University of Birmingham, UK

 Tetsuya Higuchi
National Institute of Advanced Industrial Science and Technology, Japan

Copyright © 2003, Idea Group Inc.

ABSTRACT
This chapter describes negative correlation learning for designing neural
network ensembles. Negative correlation learning has been firstly analysed
in terms of minimising mutual information on a regression task. By minimising
the mutual information between variables extracted by two neural networks,
they are forced to convey different information about some features of their
input. Based on the decision boundaries and correct response sets, negative
correlation learning has been further studied on two pattern classification
problems. The purpose of examining the decision boundaries and the correct
response sets is not only to illustrate the learning behavior of negative
correlation learning, but also to cast light on how to design more effective
neural network ensembles. The experimental results showed the decision
boundary of the trained neural network ensemble by negative correlation
learning is almost as good as the optimum decision boundary.

TLFeBOOK

2 Liu, Yao and Higuchi

INTRODUCTION
In single neural network methods, the neural network learning problem is often

formulated as an optimisation problem, i.e., minimising certain criteria, e.g.,
minimum error, fastest learning, lowest complexity, etc., about architectures.
Learning algorithms, such as backpropagation (BP) (Rumelhart, Hinton & Williams,
1986), are used as optimisation algorithms to minimise an error function. Despite
the different error functions used, these learning algorithms reduce a learning
problem to the same kind of optimisation problem.

Learning is different from optimisation because we want the learned system to
have best generalisation, which is different from minimising an error function. The
neural network with the minimum error on the training set does not necessarily have
the best generalisation unless there is an equivalence between generalisation and the
error function. Unfortunately, measuring generalisation exactly and accurately is
almost impossible in practice (Wolpert, 1990), although there are many theories
and criteria on generalisation, such as the minimum description length (Rissanen,
1978), Akaike’s information criteria (Akaike, 1974) and minimum message length
(Wallace & Patrick, 1991). In practice, these criteria are often used to define better
error functions in the hope that minimising the functions will maximise generalisation.
While better error functions often lead to better generalisation of learned systems,
there is no guarantee. Regardless of the error functions used, single network
methods are still used as optimisation algorithms. They just optimise different error
functions. The nature of the problem is unchanged.

While there is little we can do in single neural network methods, there are
opportunities in neural network ensemble methods. Neural network ensembles
adopt the divide-and-conquer strategy. Instead of using a single network to solve
a task, a neural network ensemble combines a set of neural networks which learn
to subdivide the task and thereby solve it more efficiently and elegantly. A neural
network ensemble offers several advantages over a monolithic neural network.
First, it can perform more complex tasks than any of its components (i.e., individual
neural networks in the ensemble). Secondly, it can make an overall system easier
to understand and modify. Finally, it is more robust than a monolithic neural network
and can show graceful performance degradation in situations where only a subset
of neural networks in the ensemble are performing correctly. Given the advantages
of neural network ensembles and the complexity of the problems that are beginning
to be investigated, it is clear that the neural network ensemble method will be an
important and pervasive problem-solving technique.

The idea of designing an ensemble learning system consisting of many
subsystems can be traced back to as early as 1958 (Selfridge, 1958; Nilsson,
1965). Since the early 1990s, algorithms based on similar ideas have been
developed in many different but related forms, such as neural network ensembles

TLFeBOOK

Designing Neural Network Ensembles 3

(Hansen & Salamon, 1990; Sharkey, 1996), mixtures of experts (Jacobs, Jordan,
Nowlan & Hinton, 1991; Jacobs & Jordan, 1991; Jacobs, Jordan & Barto, 1991;
Jacobs, 1997), various boosting and bagging methods (Drucker, Cortes, Jackel,
LeCun & Vapnik, 1994; Schapire, 1990; Drucker, Schapire & Simard, 1993) and
many others. There are a number of methods of designing neural network
ensembles. To summarise, there are three ways of designing neural network
ensembles in these methods: independent training, sequential training and simultaneous
training.

A number of methods have been proposed to train a set of neural networks
independently by varying initial random weights, the architectures, the learning
algorithm used and the data (Hansen et al., 1990; Sarkar, 1996). Experimental
results have shown that networks obtained from a given network architecture for
different initial random weights often correctly recognize different subsets of a given
test set (Hansen et al., 1990; Sarkar, 1996). As argued in Hansen et al. (1990),
because each network makes generalisation errors on different subsets of the input
space, the collective decision produced by the ensemble is less likely to be in error
than the decision made by any of the individual networks.

Most independent training methods emphasised independence among individual
neural networks in an ensemble. One of the disadvantages of such a method is the
loss of interaction among the individual networks during learning. There is no
consideration of whether what one individual learns has already been learned by
other individuals. The errors of independently trained neural networks may still be
positively correlated. It has been found that the combining results are weakened if
the errors of individual networks are positively correlated (Clemen & Winkler,
1985). In order to decorrelate the individual neural networks, sequential training
methods train a set of networks in a particular order (Drucker et al., 1993; Opitz
& Shavlik, 1996; Rosen, 1996). Drucker et al. (1993) suggested training the neural
networks using the boosting algorithm. The boosting algorithm was originally
proposed by Schapire (1990). Schapire proved that it is theoretically possible to
convert a weak learning algorithm that performs only slightly better than random
guessing into one that achieves arbitrary accuracy. The proof presented by
Schapire (1990) is constructive. The construction uses filtering to modify the
distribution of examples in such a way as to force the weak learning algorithm to
focus on the harder-to-learn parts of the distribution.

Most of the independent training methods and sequential training methods
follow a two-stage design process: first generating individual networks, and then
combining them. The possible interactions among the individual networks cannot be
exploited until the integration stage. There is no feedback from the integration stage
to the individual network design stage. It is possible that some of the independently
designed networks do not make much contribution to the integrated system. In

TLFeBOOK

4 Liu, Yao and Higuchi

order to use the feedback from the integration, simultaneous training methods train
a set of networks together. Negative correlation learning (Liu & Yao, 1998a,
1998b, 1999) and the mixtures-of-experts (ME) architectures (Jacobs et al., 1991;
Jordan & Jacobs, 1994) are two examples of simultaneous training methods. The
idea of negative correlation learning is to encourage different individual networks in
the ensemble to learn different parts or aspects of the training data, so that the
ensemble can better learn the entire training data. In negative correlation learning,
the individual networks are trained simultaneously rather than independently or
sequentially. This provides an opportunity for the individual networks to interact
with each other and to specialise.

In this chapter, negative correlation learning has been firstly analysed in terms
of minimising mutual information on a regression task. The similarity measurement
between two neural networks in an ensemble can be defined by the explicit mutual
information of output variables extracted by two neural networks. The mutual
information between two variables, output Fi of network i and output Fj of network
j, is given by

I(Fi ; Fj) = h(Fi) + h(Fj) − h(Fi , Fj) (1)

where h(Fi) is the entropy of Fi , h(Fj) is the entropy of Fj, and h(Fi , Fj) is the joint
differential entropy of Fi and Fj. The equation shows that joint differential entropy
can only have high entropy if the mutual information between two variables is low,
while each variable has high individual entropy. That is, the lower mutual information
two variables have, the more different they are. By minimising the mutual information
between variables extracted by two neural networks, they are forced to convey
different information about some features of their input. The idea of minimising
mutual information is to encourage different individual networks to learn different
parts or aspects of the training data so that the ensemble can learn the whole training
data better.

Based on the decision boundaries and correct response sets, negative
correlation learning has been further studied on two pattern classification problems.
The purpose of examining the decision boundaries and the correct response sets is
not only to illustrates the learning behavior of negative correlation learning, but also
to cast light on how to design more effective neural network ensembles. The
experimental results showed the decision boundary of the trained neural network
ensemble by negative correlation learning is almost as good as the optimum decision
boundary.

The rest of this chapter is organised as follows: Next, the chapter explores the
connections between the mutual information and the correlation coefficient, and

TLFeBOOK

Designing Neural Network Ensembles 5

explains how negative correlation learning can be used to minimise mutual informa-
tion; then the chapter analyses negative correlation learning via the metrics of mutual
information on a regression task; the chapter then discusses the decision boundaries
constructed by negative correlation learning on a pattern classification problem;
finally the chapter examines the correct response sets of individual networks trained
by negative correlation learning and their intersections, and the chapter concludes
with a summary of the chapter and a few remarks.

MINIMISING MUTUAL INFORMATION BY
NEGATIVE CORRELATION LEARNING

Minimisation of Mutual Information
Suppose the output Fi of network i and the output Fj of network j are

Gaussian random variables. Their variances are σi
2 and σj

2, respectively. The mutual
information between Fi and Fj can be defined by Eq.(1) (van der Lubbe, 1997,
1999). The differential entropy h(Fi) and h(Fj) are given by

h(Fi) = [1 + log(2πσi
2)] / 2 (2)

and

h(Fj) = [1 + log(2πσ j
2)] / 2 (3)

The joint differential entropy h(Fi , Fj) is given by

h(Fi , Fj) = 1 + log(2π) + log|det(Σ)| (4)

where Σ is the 2-by-2 covariance matrix of Fi and Fj. The determinant of Σ is

det(Σ) = σi
2σj

2 (1 − ρij
2) (5)

where ρij
 is the correlation coefficient of Fi and Fj

TLFeBOOK

6 Liu, Yao and Higuchi

ρij
 = E[(Fi − E[Fi])(Fj − E[Fj])] / (σi

2σj
2) (6)

Using the formula of Eq.(5), we get

h(Fi , Fj) = 1 + log(2π) + log[σi
2σj

2 (1 − ρij
2)] / 2 (7)

By substituting Eqs.(2), (3), and (7) in (1), we get

I(Fi ; Fj) = − log(1 − ρij
2) / 2 (8)

From Eq.(8), we may make the following statements:
1. If Fi and Fj are uncorrelated, the correlation coefficient ρij is reduced to zero,

and the mutual information I(Fi ; Fj) becomes very small.
2. If Fi and Fj are highly positively correlated, the correlation coefficient ρij

 is
close to 1, and mutual information I(Fi ; Fj) becomes very large.
Both theoretical and experimental results (Clemen et al., 1985) have indicated

that when individual networks in an ensemble are unbiased, average procedures are
most effective in combining them when errors in the individual networks are
negatively correlated and moderately effective when the errors are uncorrelated.
There is little to be gained from average procedures when the errors are positively
correlated. In order to create a population of neural networks that are as
uncorrelated as possible, the mutual information between each individual neural
network and the rest of the population should be minimised. Minimising the mutual
information between each individual neural network and the rest of the population
is equivalent to minimising the correlation coefficient between them.

Negative Correlation Learning
Given the training data set D = {(x(1),y(1)), … , (x(N),y(N))}, we consider

estimating y by forming a neural network ensemble whose output is a simple
averaging of outputs Fi of a set of neural networks. All the individual networks in
the ensemble are trained on the same training data set D

 F (n) = M
1 Σi = 1

M F i (n) (9)

TLFeBOOK

Designing Neural Network Ensembles 7

where Fi(n) is the output of individual network i on the nth training pattern x(n), F(n)
is the output of the neural network ensemble on the nth training pattern, and M is
the number of individual networks in the neural network ensemble.

The idea of negative correlation learning is to introduce a correlation penalty
term into the error function of each individual network so that the individual network
can be trained simultaneously and interactively. The error function Ei for individual
i on the training data set D in negative correlation learning is defined by

 E i = N
1 Σ n = 1

N [2 1 (F i (n) – y (n)) 2 + λ p i (n)] (10)

where N is the number of training patterns, Ei(n) is the value of the error function
of network i at presentation of the nth training pattern and y(n) is the desired output
of the nth training pattern. The first term in the right side of Eq.(10) is the mean-
squared error of individual network i. The second term pi is a correlation penalty
function. The purpose of minimising pi is to negatively correlate each individual’s
error with errors for the rest of the ensemble. The parameter λ is used to adjust the
strength of the penalty.

The penalty function pi has the form

pi(n) = − (Fi(n)-F(n))2 / 2 (11)

The partial derivative of Ei with respect to the output of individual i on the nth
training pattern is

∂ F i (n)
∂ E i (n) = F i (n) – y (n) – λ (F i (n) – F (n)) (12)

where we have made use of the assumption that the output of ensemble F(n) has
constant value with respect to Fi(n). The value of parameter λ lies inside the range
0 ≤ λ ≤ 1 so that both (1 – λ) and λ have nonnegative values. BP (Rumelhart et al.,
1996) algorithm has been used for weight adjustments in the mode of pattern-by-
pattern updating. That is, weight updating of all the individual networks is performed
simultaneously using Eq.(12) after the presentation of each training pattern. One
complete presentation of the entire training set during the learning process is called
an epoch. Negative correlation learning from Eq.(12) is a simple extension to the
standard BP algorithm. In fact, the only modification that is needed is to calculate
an extra term of the form λ(Fi(n) – F(n)) for the ith neural network.

TLFeBOOK

8 Liu, Yao and Higuchi

From Eqs.(10), (11) and (12), we may make the following observations:
1. During the training process, all the individual networks interact with each other

through their penalty terms in the error functions. Each network Fi minimises
not only the difference between Fi(n) and y(n), but also the difference
between F(n) and y(n). That is, negative correlation learning considers errors
what all other neural networks have learned while training a neural network.

2. For λ = 0.0, there are no correlation penalty terms in the error functions of the
individual networks, and the individual networks are just trained indepen-
dently using BP. That is, independent training using BP for the individual
networks is a special case of negative correlation learning.

3. For λ =1, from Eq.(12) we get

∂ F i (n)
∂ E i (n) = F (n) – y (n) (13)

Note that the error of the ensemble for the nth training pattern is defined by

 E ensemble = 2
1 (M

1 Σ i = 1
M F i (n) – y (n)) 2 (14)

The partial derivative of Eensemble with respect to Fi on the nth training pattern is

∂ F i (n)

∂ E ensemble = M
1 (F (n) – y (n)) (15)

In this case, we get

∂ F i (n)
∂ E i (n) α ∂ F i (n)

∂ E ensemble (16)

The minimisation of the error function of the ensemble is achieved by minimising
the error functions of the individual networks. From this point of view, negative
correlation learning provides a novel way to decompose the learning task of the
ensemble into a number of subtasks for different individual networks.

TLFeBOOK

Designing Neural Network Ensembles 9

ANALYSIS BASED ON MEASURING
MUTUAL INFORMATION

In order to understand why and how negative correlation learning works, this
section analyses it through measuring mutual information on a regression task in
three cases: noise-free condition, small noise condition and large noise condition.

Simulation Setup
The regression function investigated here is

 f (x) = 1 3
1 [1 0 sin (π x 1 x 2) + 2 0 (x 3 – 2

1) 2 + 1 0 x 4 + 5 x 5)] – 1 (17)

where x =[x1, …, x5] is an input vector whose components lie between zero and
one. The value of f(x) lies in the interval [-1, 1]. This regression task has been used
by Jacobs (1997) to estimate the bias of mixture-of-experts architectures and the
variance and covariance of experts’ weighted outputs.

Twenty-five training sets, (x(k) (l), y(k)(l)), l = 1, …, L, L = 500, k = 1, …, K,
K = 25, were created at random. Each set consisted of 500 input-output patterns
in which the components of the input vectors were independently sampled from a
uniform distribution over the interval (0, 1). In the noise-free condition, the target
outputs were not corrupted by noise; in the small noise condition, the target outputs
were created by adding noise sampled from a Gaussian distribution with a mean of
zero and a variance of σ2 = 0.1 to the function f(x); in the large noise condition, the
target outputs were created by adding noise sampled from a Gaussian distribution
with a mean of zero and a variance of σ2 = 0.2 to the function f(x). A testing set of
1,024 input-output patterns, (t(n), d(n)), n = 1, …, N, N = 1024, was also
generated. For this set, the components of the input vectors were independently
sampled from a uniform distribution over the interval (0, 1), and the target outputs
were not corrupted by noise in all three conditions. Each individual network in the
ensemble is a multi-layer perceptron with one hidden layer. All the individual
networks have 5 hidden nodes in an ensemble architecture. The hidden node
function is defined by the logistic function

 φ (y) = 1 + exp (– y)
1 (18)

The network output is a linear combination of the outputs of the hidden nodes.

TLFeBOOK

10 Liu, Yao and Higuchi

For each estimation of mutual information among an ensemble, 25 simulations
were conducted. In each simulation, the ensemble was trained on a different training
set from the same initial weights distributed inside a small range so that different
simulations of an ensemble yielded different performances solely due to the use of
different training sets. Such simulation setup follows the suggestions from Jacobs
(1997).

Measurement of Mutual Information
The average outputs of the ensemble and the individual network i on the nth

pattern in the testing set, (t(n), d(n)), n = 1, …, N, are denoted and given
respectively by

 F (t (n)) = K
1 Σ k = 1

K F (k) (t (n)) (19)

and

 F i (t (n)) = K
1 Σ k = 1

K F (k) i (t (n)) (20)

where F(k)(t(n)) and Fi
(k)(t(n)) are the outputs of the ensemble and the individual

network i on the nth pattern in the testing set from the kth simulation, respectively,
and K = 25 is the number of simulations. From Eq.(6), the correlation coefficient
between network i and network j is given by

(21)

From Eq.(8), the integrated mutual information among the ensembles can be
defined by

 E mi = – 2
1 Σ i = 1

M Σ j = 1 , j i
M log (1 – ρ 2 i j) (22)

TLFeBOOK

Designing Neural Network Ensembles 11

We may also define the integrated mean-squared error (MSE) on the testing set as

 E mse = N
1 Σ n = 1

N
K
1 Σ k = 1

K (F (k) (t (n)) – d (n)) 2 (23)

The integrated mean-squared error Etrain_mse on the training set is given by

 E train_mis = L
1 Σ l=1

L
K
1 Σ k=1

K (F (k) (x (k) (l)) – y (k) (l)) 2 (24)

Results in the Noise-Free Condition
The results of negative correlation learning in the noise-free condition for the

different values of λ at epoch 2000 are given in Table 1. The results suggest that both
Etrain_mse and Etest_mse appeared to decrease with the increasing value of λ. The
mutual information Emi among the ensemble decreased as the value of λ increased
when 0 ≤ λ ≤ 0.5. However, when λ increased further to 0.75 and 1, the mutual
information Emi had larger values. The reason of having larger mutual information
at λ = 0.75 and λ = 1 is that some correlation coefficients had negative values and
the mutual information depends on the absolute values of correlation coefficients.

In order to find out why Etrain_mse decreased with increasing value of λ, the
concept of capability of a trained ensemble is introduced. The capability of a trained
ensemble is measured by its ability of producing correct input-output mapping on
the training set used, specifically, by its integrated mean-squared error Etrain_mse on

λ 0 0.25 0.5 0.75 1
Emi 0.3706 0.1478 0.1038 0.1704 0.6308
Etest_mse 0.0016 0.0013 0.0011 0.0007 0.0002
Etrain_mse 0.0013 0.0010 0.0008 0.0005 0.0001

Table 1: The results of negative correlation learning in the noise-free
condition for different l values at epoch 2000

the training set. The smaller Etrain_mse is, the larger capability the trained ensemble
has.

Results in the Noise Conditions
Table 2 and Table 3 compare the performance of negative correlation learning

for different strength parameters in both small noise (variance σ2 = 0.1) and large

TLFeBOOK

12 Liu, Yao and Higuchi

noise (variance σ2 = 0.2) conditions. The results show that there were same trends
for Emi , Etest_mse and Etrain_mse in both noise-free and noise conditions when λ ≤ 0.5.
That is, Emi , Etest_mse and Etrain_mse appeared to decrease with the increasing value
of λ. However, Etest_mse appeared to decrease first and then increase with the
increasing value of λ.

In order to find out why Etest_mse showed different trends in noise-free and noise
conditions when λ = 0.75 and λ = 1, the integrated mean-squared error Etrain_mse
on the training set was also shown in Tables 1, 2 and 3. When λ = 0, the neural
network ensemble trained had relatively large Etrain_mse. It indicated that the
capability of the neural network ensemble trained was not big enough to produce
correct input-output mapping (i.e., it was underfitting) for this regression task.
When λ = 1, the neural network ensemble trained learned too many specific input-
output relations (i.e., it was overfitting), and it might memorise the training data and
therefore be less able to generalise between similar input-output patterns. Although
the overfitting was not observed for the neural network ensemble used in the noise-
free condition, too large capability of the neural network ensemble will lead to
overfitting for both noise-free and noise conditions because of the ill-posedness of
any finite training set (Friedman, 1994).

Choosing a proper value of λ is important, and also problem dependent. For
the noise conditions used for this regression task and the ensemble architectured
used, the performance of the ensemble was optimal for λ = 0.5 among the tested
values of λ in the sense of minimising the MSE on the testing set.

λ 0 0.25 0.5 0.75 1
Emi 6.5495 3.8761 1.4547 0.3877 0.2431
Etest_mse 0.0137 0.0128 0.0124 0.0126 0.0290
Etrain_mse 0.0962 0.0940 0.0915 0.0873 0.0778

Table 2: The results of negative correlation learning in the small noise
condition for different λ values at epoch 2000

Table 3: The results of negative correlation learning in the large noise
condition for different λ values at epoch 2000

λ 0 0.25 0.5 0.75 1
Emi 6.7503 3.9652 1.6957 0.4341 0.2030
Etest_mse 0.0249 0.0235 0.0228 0.0248 0.0633
Etrain_mse 0.1895 0.1863 0.1813 0.1721 0.1512

TLFeBOOK

Designing Neural Network Ensembles 13

ANALYSIS BASED ON DECISION BOUNDARIES
This section analyses the decision boundaries constructed by both negative

correlation learning and the independent training. The independent training is a
special case of negative correlation learning for λ = 0.0 in Eq.(12).

Simulation Setup
The objective of the pattern classification problem is to distinguish between two
classes of overlapping, two-dimensional, Gaussian-distributed patterns labeled 1
and 2. Let Class 1 and Class 2 denote the set of events for which a random vector
x belongs to patters 1 and 2, respectively. We may then express the conditional
probability density functions for the two classes:

 f x (x) =
2 π σ 2 1

1 exp (–
2 σ 2 1
1 x – µ 1 2) (25)

where mean vector µ1 = [0,0]T and variance σ1
2 = 1.

 f x (x) =
2 π σ 2 2

1 exp (–
2 σ 2 2
1 x – µ 2 2) (26)

where mean vector µ2 = [0,0]T and variance σ2
2 = 4. The two classes are assumed

to be equiprobable; that is p1 = p2 = ½. The costs for misclassifications are assumed
to be equal, and the costs for correct classifications are assumed to be zero. On this
basis, the (optimum) Bayes classifier achieves a probability of correct classification
pc = 81.51 percent. The boundary of the Bayes classifier consists of a circle of
center [−2/3, 0]T and radius r = 2.34; 1000 points from each of two processes were
generated for the training set. The testing set consists of 16,000 points from each
of two classes.

Figure 1 shows individual scatter diagrams for classes and the joint scatter
diagram representing the superposition of scatter plots of 500 points from each of
two processes. This latter diagram clearly shows that the two distributions overlap
each other significantly, indicating that there is inevitably a significant probability of
misclassification.

The ensemble architecture used in the experiments has three networks. Each
individual network in the ensemble is a multi-layer perceptron with one hidden layer.
All the individual networks have three hidden nodes in an ensemble architecture.

TLFeBOOK

14 Liu, Yao and Higuchi

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of network 1
boundary of Bayesian decision

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of network3
boundary of Bayesian decision

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of ensemble
boundary of Bayesian decision

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of network 2
boundary of Bayesian decision

(a)

(c)

(b)

(d)

Figure 2: Decision boundaries formed by the different networks trained by the
negative correlation learning (λ = 0.75): (a) Network 1; (b) Network 2; (c)
Network 3; (d) Ensemble; the circle represents the optimum Bayes solution

Both hidden node function and output node function are defined by the logistic
function in Eq.(18).

Experimental Results
The results presented in Table 4 pertain to 10 different runs of the experiment,

with each run involving the use of 2,000 data points for training and 32,000 for
testing. Figures 2 and 3 compare the decision boundaries constructed by negative

Figure 1: (a) Scatter plot of Class 1; (b) Scatter plot of Class 2; (c) Combined
scatter plot of both classes; the circle represents the optimum Bayes solution

boundary of networks
boundary of Bayesian decision -----------

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6 8 10

Class 1

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6 8 10

Class 2

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6 8 10

Class 1
Class 2

(a) (b) (c)

(a)

(c) (d)

(b)

TLFeBOOK

Designing Neural Network Ensembles 15

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of network 1
boundary of Bayesian decision

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of network3
boundary of Bayesian decision

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of network 2
boundary of Bayesian decision

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6

boundary of ensemble
boundary of Bayesian decision

(a) (b)

(c) (d)

Figure 3: Decision boundaries formed by the different networks trained by the
independent training (i.e., λ = 0.0 in negative correlation learning): (a)
Network 1; (b) Network 2; (c) Network 3; (d) Ensemble; the circle represents
the optimum Bayes solution

correlation learning and the independent training. In comparison of the average
correct classification percentage and the decision boundaries obtained by the two
ensemble learning methods, it is clear that negative correlation learning outperformed
the independent training method. Although the classification performance of
individual networks in the independent training is relatively good, the overall
performance of the entire ensemble was not improved because different networks,
such as Network 1 and Network 3 in Figure 3, tended to generate the similar
decision boundaries.

The percentage of correct classification of the ensemble trained by negative
correlation is 81.41, which is almost equal to that realised by the Bayesian classifier.
Figure 2 clearly demonstrates that negative correlation learning is capable of
constructing a decision between Class 1 and Class 2 that is almost as good as the
optimum decision boundary. It is evident from Figure 2 that different individual
networks trained by negative correlation learning were able to specialise to different
parts of the testing set.

boundary of networks
boundary of Bayesian decision -----------

(a)

(c) (d)

(b)

TLFeBOOK

16 Liu, Yao and Higuchi

ANALYSIS BASED ON THE CORRECT
RESPONSE SETS

In this section, negative correlation learning was tested on the Australian credit
card assessment problem. The problem is how to assess applications for credit
cards based on a number of attributes. There are 690 patterns in total. The output
has two classes. The 14 attributes include 6 numeric values and 8 discrete ones, the
latter having from 2 to 14 possible values. The Australian credit card assessment
problem is a classification problem which is different from the regression type of
tasks, whose outputs are continuous. The data set was obtained from the UCI
machine learning benchmark repository. It is available by anonymous ftp at
ics.uci.edu (128.195.1.1) in directory /pub/machine-learning-databases.

Experimental Setup
The data set was partitioned into two sets: a training set and a testing set. The

first 518 examples were used for the training set, and the remaining 172 examples
for the testing set. The input attributes were rescaled to between 0.0 and 1.0 by
a linear function. The output attributes of all the problems were encoded using a 1-
of-m output representation for m classes. The output with the highest activation
designated the class. The aim of this section is to study the difference between
negative correlation learning and independent training, rather than to compare
negative correlation learning with previous work. The experiments used such a
single train-and-test partition.

The ensemble architecture used in the experiments has 4 networks. Each
individual network is a feedforward network with one hidden layer. Both hidden
node function and output node function are defined by the logistic function in
Eq.(18). All the individual networks have 10 hidden nodes. The number of training

Methods Net 1 Net 2 Net 3 Ensemble

NCL 81.11 75.26 73.09 81.03

Independent
Training

81.13 80.49 81.13 80.99

Table 4: Comparison between negativecorrelation learning (NCL) (λ = 0.75)
and the independent training (i.e., λ = 0.0 in negative correlation learning)
on the classification performance of individual networks and the ensemble;
the results are the average correct classification percentage on the testing set
over 10 independent runs

TLFeBOOK

Designing Neural Network Ensembles 17

epochs was set to 250. The strength parameter λ was set to 1.0. These parameters
were chosen after limited preliminary experiments. They are not meant to be
optimal.

Experimental Results
Table 5 shows the average results of negative correlation learning over 25 runs.

Each run of negative correlation learning was from different initial weights. The
ensemble with the same initial weight setup was also trained using BP without the
correlation penalty terms (i.e., λ = 0.0 in negative correlation learning). Results are
also shown in Table 5. For this problem, the simple averaging defined in Eq.(9) was
first applied to decide the output of the ensemble. For the simple averaging, it was
surprising that the results of negative correlation learning with λ = 1.0 were similar
to those of independent training. This phenomenon seems contradictory to the claim
that the effect of the correlation penalty term is to encourage different individual
networks in an ensemble to learn different parts or aspects of the training data. In
order to verify and quantify this claim, we compared the outputs of the individual
networks trained with the correlation penalty terms to those of the individual
networks trained without the correlation penalty terms.

Table 5: Comparison of error rates between negative correlation learning (λ
= 1.0) and independent training (i.e., λ = 0.0 in negative correlation learning)
on the Australian credit card assessment problem; the results were averaged
over 25 runs. “Simple Averaging” and “Winner-Takes-All” indicate two
different combination methods used in negative correlation learning, Mean,
SD, Min and Max indicate the mean value,standard deviation, minimum and
maximum value, respectively

 Error Rate Simple Averageing Winner-Takes-All

λ = 1.0 Mean

SD

Min

Max

0.1337

0.0068

0.1163

0.1454

0.1195

0.0052

0.1105

0.1279

λ = 0.0 Mean

SD

Min

Max

0.1368

0.0048

0.1279

0.1454

0.1384

0.0049

0.1279

0.1512

TLFeBOOK

18 Liu, Yao and Higuchi

Two notions were introduced to analyse negative correlation learning. They
are the correct response sets of individual networks and their intersections. The
correct response set Si of individual network i on the testing set consists of all the
patterns in the testing set which are classified correctly by the individual network i.
Let Ωi denote the size of set Si, and Ωi1i2⋅⋅⋅ik denote the size of set Si1∩Si2 ∩···∩Sik.
Table 6 shows the sizes of the correct response sets of individual networks and their
intersections on the testing set, where the individual networks were respectively
created by negative correlation learning and independent training. It is evident from
Table 6 that different individual networks created by negative correlation learning
were able to specialise to different parts of the testing set. For instance, in Table 6
the sizes of both correct response sets S2 and S4 at λ = 1.0 were 143, but the size
of their intersection S2 ∩S4 was 133. The size of S1 ∩S2 ∩S3∩S4 was only 113.
In contrast, the individual networks in the ensemble created by independent training
were quite similar. The sizes of correct response sets S1, S2, S3 and S4 at λ = 0.0
were from 147 to 149, while the size of their intersection set S1 ∩S2 ∩ S3∩S4
reached 146. There were only three different patterns correctly classified by the
four individual networks in the ensemble.

In simple averaging, all the individual networks have the same combination
weights and are treated equally. However, not all the networks are equally
important. Because different individual networks created by negative correlation
learning were able to specialise to different parts of the testing set, only the outputs
of these specialists should be considered to make the final decision about the
ensemble for this part of the testing set. In this experiment, a winner-takes-all
method was applied to select such networks. For each pattern of the testing set,

Table 6: The sizes of the correct response sets of individual networks created
respectively by negative correlation learning (λ = 1.0) and independent
training (i.e., λ = 0.0 in negative correlation learning) on the testing set and
the sizes of their intersections for the Australian credit card assessment
problem; the results were obtained from the first run among the 25 runs

λ = 1.0 λ = 0.0

Ω1 = 147 Ω2 = 143 Ω2 = 138 Ω1 = 149 Ω2 = 147 Ω2 = 148

Ω4 = 143 Ω12 = 138 Ω13 = 124 Ω4 = 148 Ω12 = 147 Ω13 = 147

Ω14 = 141 Ω23 = 116 Ω24 = 133 Ω14 = 147 Ω23 = 147 Ω24 = 146

Ω34 = 123 Ω123 = 115 Ω124 = 133 Ω34 = 146 Ω123 = 147 Ω124 = 146

Ω134 = 121 Ω234 = 113 Ω1234= 113 Ω134 = 146 Ω234 =146 Ω1234= 146

TLFeBOOK

Designing Neural Network Ensembles 19

the output of the ensemble was only decided by the network whose output had the
highest activation. Table 5 shows the average results of negative correlation learning
over 25 runs using the winner-takes-all combination method. The winner-takes-
all combination method improved negative correlation learning significantly because
there were good and poor networks for each pattern in the testing set, and winner-
takes-all selected the best one. However, it did not improve the independent
training much because the individual networks created by the independent training
were all similar to each other.

CONCLUSIONS
This chapter describes negative correlation learning for designing neural

network ensembles. It can be regarded as one way of decomposing a large
problem into smaller and specialised ones, so that each sub-problem can be dealt
with by an individual neural network relatively easily. A correlation penalty term in
the error function was proposed to minimise mutual information and encourage the
formation of specialists in the ensemble.

 Negative correlation learning has been analysed in terms of mutual information
on a regression task in the different noise conditions. Unlike independent training
which creates larger mutual information among the ensemble, negative correlation
learning can produce smaller mutual information among the ensemble. Through
minimisation of mutual information, very competitive results have been produced by
negative correlation learning in comparison with independent training.

This chapter compares the decision boundaries and the correct response sets
constructed by negative correlation learning and the independent training for two
pattern classification problems. The experimental results show that negative
correlation learning has a very good classification performance. In fact, the decision
boundary formed by negative correlation learning is nearly close to the optimum
decision boundary generated by the Bayes classifier.

There are, however, some issues that need resolving. No special considerations
were made in optimisation of the size of the ensemble and strength parameter λ in
this chapter. Evolutionary ensembles with negative correlation learning for optimisation
of the size of the ensemble had been studied on the classification problems (Liu, Yao
& Higuchi, 2000).

REFERENCES
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.

Appl. Comp., AC-19, 716-723.

TLFeBOOK

20 Liu, Yao and Higuchi

Clemen, R. T., & Winkler, R. L. (1985). Limits for the precision and value of
information from dependent sources. Operations Research, 33:427-442.

Drucker, H., Cortes, C., Jackel, L. D., LeCun, Y. & Vapnik, V. (1994). Boosting
and other ensemble methods. Neural Computation, 6:1289-1301.

Drucker, H., Schapire, R. & Simard, P. (1993). Improving performance in neural
networks using a boosting algorithm. In Hanson, S. J., Cowan, J. D. &
Giles,C. L. (Eds.), Advances in Neural Information Processing Systems
5, pp. 42-49. San Mateo, CA: Morgan Kaufmann.

Friedman, J. H. (1994). An overview of predictive learning and function approxi-
mation. In V. Cherkassky, J. H. Friedman, and H. Wechsler, (Eds.), From
Statistics to Neural Networks: Theory and Pattern Recognition Applica-
tions, pp. 1-61. Springer-Verlag, Heidelberg, Germany.

Hansen, L. K. & Salamon, P. (1990). Neural network ensembles. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 12(10):993-1001.

Jacobs, R. A. (1997). Bias/variance analyses of mixture-of-experts architectures.
Neural Computation, 9:369-383.

Jacobs, R. A. & Jordan, M. I. (1991). A competitive modular connectionist
architecture. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, (Eds.),
Advances in Neural Information Processing Systems 3, pp. 767-773.
Morgan Kaufmann, San Mateo, CA.

Jacobs, R. A., Jordan, M. I. & Barto, A. G. (1991). Task decomposition through
competition in a modular connectionist architecture: the what and where vision
task. Cognitive Science, 15:219-250.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. & Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation, 3:79-87.

Jordan, M. I. & Jacobs, R. A. (1994). Hierarchical mixtures-of-experts and the em
algorithm. Neural Computation, 6:181-214.

Liu, Y. & Yao, X. (1998a). Negatively correlated neural networks can produce
best ensembles. Australian Journal of Intelligent Information Processing
Systems, 4:176-185.

Liu, Y. & Yao, X. (1998b). A cooperative ensemble learning system. In Proceed-
ings of the 1998 IEEE International Joint Conference on Neural
Networks (IJCNN’98), pages 2202-2207. IEEE Press, Piscataway, NJ,
USA.

Liu, Y. & Yao, X. (1999). Simultaneous training of negatively correlated neural
networks in an ensemble. IEEE Trans. on Systems, Man, and Cybernetics,
Part B: Cybernetics, 29(6):716-725.

Liu, Y., Yao, X., & Higuchi, T. (2000). Evolutionary ensembles with negative
correlation learning. IEEE Trans. on Evolutionary Computation, 4(4):380-
725.

TLFeBOOK

Designing Neural Network Ensembles 21

Nilsson, N. J. (1965). Learning Machines: Foundations of Trainable Pattern-
Classifying Systems. New York: McGraw Hill.

Opitz, D. W. & Shavlik, J. W. (1996). Actively searching for an effective neural
network ensemble. Connection Science, 8:337-353.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465-
471.

Rosen, B. E. (1996). Ensemble learning using decorrelated neural networks.
Connection Science, 8:373-383.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. McClelland,
(Eds.), Parallel Distributed Processing: Explorations in the Microstruc-
tures of Cognition, Vol. I, pp. 318-362. MIT Press, Cambridge, MA.

Sarkar, D. (1996). Randomness in generalization ability: A source to improve it.
IEEE Trans. on Neural Networks, 7(3):676-685.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning,
5:197-227.

Selfridge, O. G. (1958). Pandemonium: a paradigm for learning. Mechanisation
of Thought Processes: Proceedings of a Symp. Held at the National
Physical Lab., pp. 513-526. HMSO, London.

Sharkey, A. J. C. (1996). On combining artificial neural nets. Connection Science,
8:299-313.

van der Lubbe, J. C. A. (1997). Information Theory. Cambridge: Cambridge
University Press.

van der Lubbe, J. C. A. (1999). Information Theory. (2nd ed) Prentice-Hall
International, Inc.

Wallace, C. S., & Patrick, J. D. (1991). Coding Decision Trees. Technical Report
91/153, Department of Computer Science, Monash University, Clayton,
Victoria 3168, Australia, August.

Wolpert, D. H. (1990). A mathematical theory of generalization. Complex
Systems, 4:151–249.

TLFeBOOK

22 Alippi

Chapter II

A Perturbation Size-
Independent Analysis

of Robustness in Neural
Networks by Randomized

Algorithms
C. Alippi

Politecnico di Milano, Italy

Copyright © 2003, Idea Group Inc.

ABSTRACT
This chapter presents a general methodology for evaluating the loss in performance
of a generic neural network once its weights are affected by perturbations. Since
weights represent the “knowledge space” of the neural model, the robustness
analysis can be used to study the weights/performance relationship. The perturbation
analysis, which is closely related to sensitivity issues, relaxes all assumptions made
in the related literature, such as the small perturbation hypothesis, specific
requirements on the distribution of perturbations and neural variables, the
number of hidden units and a given neural structure. The methodology, based on
Randomized Algorithms, allows reformulating the computationally intractable
problem of robustness/sensitivity analysis in a probabilistic framework
characterised by a polynomial time solution in the accuracy and confidence
degrees.

TLFeBOOK

Robustness in Neural Networks 23

INTRODUCTION
The evaluation of the effects induced by perturbations affecting a neural

computation is relevant from the theoretical point of view and in developing an
embedded device dedicated to a specific application.

In the first case, the interest is in obtaining a reliable and easy to be generated
measure of the performance loss induced by perturbations affecting the weights of
a neural network. The relevance of the analysis is obvious since weights characterise
the “knowledge space” of the neural model and, hence, its inner nature. In this
direction, a study of the evolution of the network’s weights over training time allows
for understanding the mechanism behind the generation of the knowledge space.
Conversely, the analysis of a specific knowledge space (fixed configuration for
weights) provides hints about the relationship between the weights space and the
performance function. The latter aspect is of primary interest in recurrent neural
networks where even small modifications of the weight values are critical to
performance (e.g., think of the stability of an intelligent controller comprising a
neural network and issues leading to robust control).

The second case is somehow strictly related to the first one and covers the
situation where the neural network must be implemented in a physical device. The
optimally trained neural network becomes the “golden unit” to be implemented
within a finite precision representation environment as it happens in mission-critical
applications and embedded systems. In these applications, behavioural perturbations
affecting the weights of a neural network abstract uncertainties associated with the
implementation process, such as finite precision representations (e.g., truncation or
rounding in a digital hardware, fixed or low resolution floating point representations),
fluctuations of the parameters representing the weights in analog solutions (e.g.,
associated with the production process of a physical component), ageing effects,
or more complex and subtle uncertainties in mixed implementations.

The sensitivity/robustness issue has been widely addressed in the neural
network community with a particular focus on specific neural topologies.

More in detail, when the neural network is composed of linear units, the
analysis is straightforward and the relationship between perturbations and the
induced performance loss can be obtained in a closed form (Alippi & Briozzo,
1998). Conversely, when the neural topology is non-linear, which is mostly the
case, several authors assume the small perturbation hypothesis or particular
hypothesis about the stochastic nature of the neural computation. In both cases, the
assumptions make the mathematics more amenable with the positive consequence
that a relationship between perturbations and performance loss can be derived
(e.g., see Alippi & Briozzo, 1998; Pichè, 1995). Unfortunately, these analyses
introduce hypotheses which are not always satisfied in all real applications.

TLFeBOOK

24 Alippi

Another classic approach requires expanding with Taylor the neural computation
around the nominal value of the trained weights. A subsequent linearearised analysis
follows which allows for solving the sensitivity issue (e.g., Pichè, 1995). Anyway,
the validity of such approaches depend, in turn, on the validity of the small
perturbation hypothesis: how to understand a priori if a perturbation is small for a
given application?

In other applications the small perturbation hypothesis cannot be accepted
being the involved perturbations everything but small. As an example we have the
development of a digital embedded system. There, the designer has to reduce as
possible the dimension of the weights by saving bits; this produces a positive impact
on cost, memory size and power consumption of the final device.

Differently, other authors avoid the small perturbation assumption by focusing
the attention on very specific neural network topologies and/or introducing
particular assumptions regarding the distribution of perturbations, internal neural
variables and inputs (Stevenson, Winter & Widrow, 1990; Alippi, Piuri & Sami,
1995).

Other authors have considered the sensitivity analysis under the small perturbation
hypothesis to deal with implementation aspects. In this case, perturbations are
specifically related to finite precision representations of the interim variables
characterising the neural computation (Holt & Hwang, 1993; Dundar & Rose,
1995).

Differently from the limiting approaches provided in the literature, this chapter
suggests a robustness/sensitivity analysis in the large, i.e., without assuming
constraints on the size or nature of the perturbation; as such, small perturbation
situations become only a subcase of the theory. The analysis is general and can be
applied to all neural topologies, both static and recurrent in order to quantify the
performance loss of the neural model when perturbations affect the model’s
weights.

The suggested sensitivity/robustness analysis can be applied to All neural
network models involved in system identification, control signal/image processing
and automation-based applications without any restriction. In particular, the
analysis allows for solving the following problems:
• Quantify the robustness of a generically trained neural network by means of a

suitable, easily to be computed and reliable robustness index;
• Compare different neural networks, solving a given application by ranking

them according to their robustness;
• Investigate the criticality of a recurrent model (“stability” issue) by means of its

robustness index;

TLFeBOOK

Robustness in Neural Networks 25

• Study the efficacy and effectiveness of techniques developed to improve the
robustness degree of a neural network by inspecting the improvement in
robustness.

The key elements of the perturbation analysis are Randomised Algorithms –
RAs- (Vidyasagar, 1996, 1998; Tempo & Dabbene, 1999; Alippi, 2002), which
transform the computationally intractable problem of evaluating the robustness of
a generic neural network with respect to generic, continuous perturbations, in a
tractable problem solvable with a polynomial time algorithm by resorting to
probability.

The increasing interest and the extensive use of Randomised Algorithms in
control theory, and in particular in the robust control area (Djavan, Tulleken,
Voetter, Verbruggen & Olsder, 1989; Battarcharyya, Chapellat & Keel, 1995; Bai
& Tempo, 1997; Chen & Zhou, 1997; Vidyasagar, 1998; Tempo & Dabbene,
1999, Calafiore, Dabbene & Tempo, 1999), make this versatile technique
extremely interesting also for the neural network researcher.

We suggest the interested reader to refer to Vidyasagar (1998) and Tempo
and Dabbene (1999) for a deep analysis of the use of RAs in control applications;
the author forecasts an increasing use of Randomised Algorithms in the analysis and
synthesis of intelligent controllers in the neural network community.

The structure of the chapter is as follows. We first formalise the concept of
robustness by identifying a natural and general index for robustness. Randomised
Algorithms are then briefly introduced to provide a comprehensive analysis and
adapted to estimate the robustness index. Experiments then follow to shed light on
the use of the theory in identifying the robustness index for static and recurrent neural
models.

A GENERAL ROBUSTNESS/SENSITIVITY
ANALYSIS FOR NEURAL NETWORKS

In the following we consider a generic neural network implementing the
()xfy ,ˆˆ θ= function where θ̂ is the weight (and biases) vector containing all the

trained free parameters of the neural model.
In several neural models, and in particular in those related to system identification

and control, the relationship between the inputs and the output of the system are
captured by considering a regressor vector ϕ, which contains a limited time-
window of actual and past inputs, outputs and possibly predicted outputs.

TLFeBOOK

26 Alippi

Of particular interest, in the zoo of neural models, are those which can be
represented by means of the model structures ()ϕfty =)(ˆ where function ()⋅f is
a regression-type neural network, characterised by ϕN inputs, hN non-linear
hidden units and a single effective linear/non-linear output (Ljung, 1987; Hertz,
Krog & Palmer, 1991; Hassoun, 1995; Ljung, Sjoberg & Hjalmarsson, 1996).

The absence/presence of a dynamic in the system can be modelled by a
suitable number of delay elements (or time lags), which may affect inputs (time
history on external inputs u) system outputs (time history on)(ty) on predicted
outputs (time history on)(ˆ ty) or residuals (time history on)()(ˆ)(tytyte −=).
Where it is needed)(ty ,)(ˆ ty and)(te are vectorial entities, a component for each
independent distinct variable.

Several neural model structures have been suggested in the literature, which
basically differ in the regressor vector. Examples are, NARMAX and NOE
topologies. NARMAX structure can be obtained by considering both past inputs
and outputs of the system to infer y(t). We have:

[],)(,),1(),...,(,),1(),(,),1(),(eyu ntetentytyntututu −⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅−=ϕ

Differently, the NOE structure processes only past inputs and predicted
outputs, i.e.:

[])(ˆ,),1(ˆ),(,),1(),(yu ntytyntututu −⋅⋅⋅−−⋅⋅⋅−=ϕ .

Static neural networks, such as classifiers, can be obtained by simply
considering external inputs:

[])(,),1(),(untututu −⋅⋅⋅−=ϕ .

Of course, different neural models can be considered, e.g., fully recurrent
and well fit with the suggested robustness analysis.

A general, perturbation size independent, model-independent robustness
analysis requires the evaluation of the loss in performance induced by a generic
perturbation, in our analysis affecting the weights of a generic neural network. We
denote by () ()xfxy ,,∆= ∆∆ θ the mathematical description of the perturbed
computation and by pD ℜ⊆∈∆ a generic p-dimensional perturbation vector, a
component for each independent perturbation affecting the neural computation

)(ˆ ty . The perturbation space D is characterised in stochastic terms by providing the
probability density function Dpdf .

To measure the discrepancy between ()xy∆ and)(ty or)(ˆ ty , we consider a
generic loss function U(∆). In the following we only assume that such performance
loss function is measurable according to Lebesgue with respect to D. Lebesgue
measurability for U(∆) allows us for taking into account an extremely large class
of loss functions.

TLFeBOOK

Robustness in Neural Networks 27

Common examples for U are the Mean Square Error—MSE—loss functions

() ∑
=

∆−=∆
xN

i
ii

x

xyxy
N

U
1

2)),(ˆ)(ˆ(1 and () ∑
=

∆−=∆
Nx

i
ii

x

xyxy
N

U
1

2)),(ˆ)((1
. (1)

More specifically, (1)-left compares the perturbed network with ŷ , which is
supposed to be the “golden” error-free unit while (1)-right estimates the performance
of the error-affected (perturbed) neural network (generalisation ability of the
perturbed neural model).

The formalisation of the impact of perturbation on the performance function
can be simply derived:

Definition: Robustness Index
We say that a neural network is robust at level γ in D, when the robustness

index γ is the minimum positive value for which

γ≤∆)(U , D∈∆∀ , γγ ≥∀ (2)

Immediately, from the definition of robustness index we have that a generic
neural network NN1 is more robust than NN2 if 21 γγ < and the property holds
independently from the topology of the two neural networks.

The main problem related to the determination of the robustness index γ is that
we have to compute)(∆U , D∈∆∀ if we wish a tight bound. The γ -identification
problem is therefore intractable from a computational point of view if we relax all
assumptions made in the literature as we do.

To deal with the computational aspect we associate a dual probabilistic
problem to (2):

Robustness Index: Dual Problem We say that a neural network is robust
at level γ in D with confidence η , when γ is the minimum positive value for which

ηγ ≥≤∆))(Pr(U holds D∈∆∀ , γγ ≥∀ (3)

The probabilistic problem is weaker than the deterministic one since it tolerates
the existence of a set of perturbations (whose measure according to Lebesgue is 1-
η) for which γ>∆)(u . In other words, not more than η100 % of perturbations
∆ ∈ D will generate a loss in performance larger than γ .

TLFeBOOK

28 Alippi

Probabilistic and deterministic problems are “close” to each other when we
choose, as we do, η =1. Note that γ depends only on the size of D and the neural
network structure.

The non-linearity with respect to ∆ and the lack of a priori assumptions
regarding the neural network do not allow computing (2) in a closed form for the
general perturbation case. The analysis, which would imply testing U∆ in
correspondence with a continuous perturbation space, can be solved by resorting
to probability according to the dual problem and by applying Randomised
Algorithms to solve the robustness/sensitivity problem.

RANDOMIZED ALGORITHMS AND
PERTURBATION ANALYSIS

In this paragraph we briefly review the theory behind Randomised Algorithms
and adapt them to the robustness analysis problem.

In the following we denote by pγ = Pr{U(∆) ≤ γ} the probability that the loss
in performance associated with perturbations in D is below a given—but arbitrary—
value γ.

Probability pγ is unknown, cannot be computed in a close form for a generic
U function and neural network topology, and its evaluation requires exploration of
the whole perturbation space D.

The unknown probability pγ can be estimated by sampling D with N independent
and identically distributed samples ∆i ; extraction must be carried out according to
the pdf of the perturbation.

For each sample ∆i we then generate the triplet

{ } NiIU iii ,1,)(),(, =∆∆∆ where =∆)(iI

0
1

γ
γ

>∆
≤∆

)(
)(

i

i

Uif
Uif

(4)

The true probability pγ can now simply be estimated as

∑
=

∆=
N

i
iN I

N
p

1

)(1ˆ (5)

Of course, when N tends to infinity, Np̂ converges to pγ. Conversely, on a finite
data set of cardinality N, the discrepancy between Np̂ and pγ exists and can be

TLFeBOOK

Robustness in Neural Networks 29

simply measured as Npp ˆ−γ . Npp ˆ−γ is a random variable which depends on the
particular extraction of the N samples since different extractions of N samples from
D will provide different estimates for Np̂ . By introducing an accuracy degree ε on

Npp ˆ−γ and a confidence level δ−1 (which requests that the εγ ≤− Npp ˆ
inequality is satisfied at least with probability δ−1), our problem can be formalised
by requiring that the inequality

{ } δεγ −≥≤− 1ˆPr Npp (6)

is satisfied for ∀γ ≥ 0. Of course, we wish to control the accuracy and the
confidence degrees of (6) by allowing the user to choose the most appropriate
values for the particular need. Finally, by extracting a number of samples from D
according to the Chernoff inequality (Chernoff, 1952)

22

2ln

ε
δ≥N (7)

we have that { } δεγ −≥≤− 1ˆPr Npp holds for []1,0,,0 ∈∀≥∀ εδγ .
As an example, by considering 5% in accuracy and 99% in confidence, we

have to extract 1060 samples from D; with such choice we can approximate pγ with
Np̂ introducing the maximum error 0.05 (05.0ˆ05.0ˆ +≤≤− NN ppp γ) and the

inequality holds at least with the probability 0.99.
Other bounds can be considered instead of the Chernoff’s one as suggested

by Bernoulli and Bienaymè, (e.g., see Tempo & Dabbene, 1999). Nevertheless,
the Chernoff’s bound improves upon the others and, therefore, should be preferred
if we wish to keep minimal the number of samples to be extracted. The Chernoff
bound grants that:
• N is independent from the dimension of D (and hence it does not depend on the

number of perturbations we are considering in the neural network);
• N is linear in δ

1ln and 2

1
ε (hence it is polynomial in the accuracy and confidence

degrees).
As a consequence, the dual probabilistic problem related to the identification

of the robustness index γ can be solved with randomised algorithms and therefore
with a polynomial complexity in the accuracy and the confidence degrees
independently from the number of weights of the neural model network. In fact, by
expanding the (6) we have that

TLFeBOOK

30 Alippi

{ } ()() () 11PrPr 1ˆPr i δεγδεγ −≥

≤∆−≤∆≡−≥≤− ∑
i

N I
N

upp (8)

If accuracy ε and confidence δ are small enough, we can confuse pγ and
Np̂ by committing a small error. As a consequence, the dual probabilistic problem

requiring ηγ ≥p becomes η≥Np̂ . We surely assume ε and δ to be small
enough in subsequent derivations.

The final algorithm, which allows for testing the robustness degree γ of a
neural network, is:
1. Select ε and δ sufficiently small to have enough accuracy and confidence.
2. Extract from D, according to its pdf, a number of perturbations N as

suggested by (7).
3. Generate the indicator function I(∆) and generate the estimate

)(ˆˆ γNN pp = according to (5).
4. Select the minimum value ηγ from the)(ˆˆ γNN pp = function so that

1)(ˆ =ηγNp is satisfied ηγγ ≥∀ . ηγ is the estimate of the robustness
index γ .

Note that with a simple algorithm we are able to estimate in polynomial time
the robustness degree γ of a generic neural network. The accuracy in estimating
γ can be made arbitrarily good at the expense of a larger number of samples as
suggested by Chernoff’s bound.

APPLYING THE METHODOLOGY TO STUDY
THE ROBUSTNESS OF NEURAL NETWORKS
In the experimental section we show how the robustness index for neural

networks can be computed and how it can be used to characterise a neural model.
After having presented and experimentally justified the theory supporting Randomised
Algorithms, we will focus on the following problems:
• test the robustness of a given static neural network (robustness analysis);
• study the relationships between the robustness of a static neural network and

the number of hidden units (structure redundancy);
• analyse the robustness of recurrent neural networks (robustness/stability

analysis).

In the following experiments we consider perturbations affecting weights and
biases of a neural network defined in D and subject to uniform distributions. Here,

TLFeBOOK

Robustness in Neural Networks 31

a perturbation ∆i affecting a generic weight wi must be intended as a relative
perturbation with respect to the weight magnitude according to the multiplicative
perturbation model wi, p = wi(1 + ∆i), ∀i = 1, n. A t% perturbation implies that ∆i
is drawn from a symmetrical uniform distribution of extremes

−

100
,

100
tt

;

a 5% perturbation affecting weights and biases composing vector θ̂ implies
that each weight/bias is affected by an independent perturbation extracted from the
[-0.05, 0.05] interval and applied to the nominal value according to the multiplicative
perturbation model.

Experiment 1: The impact of εεεεε, δ and N on the evaluation of the
robustness index

The reference application to be learned is the simple error-free function

4

23.0
2

1
)(

x
exsinxy

x

+
+⋅−=

⋅−

, []3,3−∈x

A set of 41 training data have been extracted from the function domain
according to a uniform distribution. We considered static feedforward neural
networks with hidden units characterised by a hyperbolic tangent activation function
and a single linear output. Training was accomplished by considering a Levenberg-
Marquardt algorithm applied to an MSE training function; a test set was considered
during the training phase to determine the optimal stopping point so as to monitor
the upsurgence of overfitting effects.

We discovered that all neural networks with at least 6 hidden units are able to
solve the function approximation task with excellent performance.

In this experiment we focus the attention on the neural network characterised
by 10 hidden units. After training we run the robustness algorithm by considering
7.5% of perturbations (weights are affected by perturbations up to 7.5% of their
magnitude) and we chose ε = 0.02 and δ = 0.01 from which we have to extract
N=6624 samples from D. We carried out three extractions of N samples and, for
each set, we computed the related)(ˆˆ γNN pp = curve.

The)(ˆˆ γNN pp = curves are given in Figure 1. As we can see the curves are
very close to each other. In fact, we know from the theory, that the estimated
probability belongs to a neighbourhood of the true one according to the

TLFeBOOK

32 Alippi

02.0ˆ02.0ˆ +≤≤− NN ppp γ relationship. A single curve is therefore enough to
characterise the robustness of the envisaged neural network and there is no need
to consider multiple runs. By inspecting Figure 1 we obtain that the estimate of the
robustness index γ is ηγ =11 which implies that U(∆) ≤ 11, ∀∆∈D with high
probability.

We wish now to study the impact of N on)(ˆˆ γNN pp = by considering three
runs with different ε and δ according to Table 1.

The)(ˆˆ γNN pp = curves are given in Figure 2. It is interesting to note, at least
for the specific application, that even with low values of N, the estimates for

)(ˆˆ γNN pp = and ηγ are reasonable and not far from each other. We should
anyway extract the number of samples according to Chernoff’s inequality.

Experiment 2: Testing the robustness of a given neural network
In the second experiment we test the robustness of the 10 hidden units network

by considering its behaviour once affected by stronger perturbations (larger D) and,
in particular, for perturbations 1%, 3%, 5%, 10%, 30%. We selected ε = 0.02 and
δ = 0.01.

The ()γγγ pp ˆˆ = function corresponding to the different perturbations is given
in Figure 3.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gamma

Pγ

Figure 1:)(ˆˆ γNN pp = for three different runs

ε δ N
0.02 0.01 6624
0.05 0.05 738
0.1 0.1 150

Table 1: ε , δ and N

TLFeBOOK

Robustness in Neural Networks 33

Again, from its definition, γ is the smallest value for which γp̂ =1, γγ ≥ ; as
an example, if we consider the 5% perturbation case, γ assumes a value around
7. It is obvious, but interesting to point out that, by increasing the strength of
perturbation (i.e., by enlarging the extremes of the uniform distribution characterising
the pdf of D), γ increases. In fact, stronger perturbations have a worse impact on
the performance loss function since the error-affected neural network diverges from
the error-free one. Conversely, we see that small perturbations, e.g., the 1% one,
induce a very small loss in performance since the robustness index ηγ is very small.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gamma

Pγ

Figure 3: γp̂ as a function of γ for the 10 hidden units neural network

Figure 2:)(ˆˆ γNN pp = for different runs with parameters given in Table 1

TLFeBOOK

34 Alippi

Experiment 3: Testing the robustness of a hierarchy of performance-
equivalent neural networks

Once we have identified the robustness degree of a neural network solving an
application, we can investigate whether it is possible to improve the robustness
degree of the application by considering a sort of structural redundancy or not. This
issue can be tackled by considering the neural hierarchy M: M1 ⊆ M2... ⊆ Mk...
where Mk represents a neural network with k hidden units.

To this end, we consider a set of performance-equivalent neural networks,
each of which is able to solve the application with a performance tolerable by the
user. All neural networks are characterised by a different topological complexity
(number of hidden units).

The ()γγγ pp ˆˆ = curves parameterised in the number of hidden units are given
in Figure 4 in the case of 1% perturbation. We can see that by increasing the number
of hidden units, γ decreases. We immediately realise that neural networks with a
reduced number of hidden units are, for this application, less robust than the ones
possessing more degrees of freedom. Large networks provide, in a way, a sort of
spatial redundancy: information characterising the knowledge space of the neural
networks is distributed over more degrees of freedom.

We discovered cases where a larger neural network was less robust than a
smaller one: in such a case probably the complex model degenerates into a simpler
one.

The evolution of γ over the number of hidden units parameterised with respect
to the different perturbations 5%, 10% and 30% is given in Figure 5. We note that
the minimal network, namely the smallest network able to solve the application, is
not the more robust one for this application (in fact it possesses large values for the
γ s).

Figure 4: γp̂ over γ and parameterised in the number of hidden units

TLFeBOOK

Robustness in Neural Networks 35

This trend—verified also with other applications—suggests that the robustness
degree of the neural network improves on the average by increasing the number of
hidden units (spatial redundancy). Anyway, with a small increase in the topological
complexity (e.g., by considering the 13 hidden units model instead of the 6 one), we
obtain a significant improvement according to the robustness level. There is no need
to consider more complex neural networks since the improvement in robustness is
small.

Experiment 4: Testing the robustness of recurrent neural networks
The goal of the last experiment is to study the robustness/stability of recurrent

neural networks with the suggested theory. The chosen application refers to the
identification of the open-loop stable, nonlinear, continuous system suggested in
Norgaard (2000). The input and the corresponding output sequence of the system
to be identified is given in Figure 6.

We first considered an NOE recurrent neural network with 5 hidden units
characterised by the regressor vector [])2(ˆ),1(ˆ),2(),1(−−−−= tytytutuϕ . The
non-linear core of the neural network is a static regression type neural network as
the one considered in the function approximation experiments. The topology of the
NOE network is given in figure 7.

Once trained, the network we applied the methodology to estimates the
robustness of the recurrent model. The ()γγγ pp ˆˆ = curve, evaluated with

05.0== δε , for the 0.1% perturbation case is given in Figure 8. As we could
have expected, differently from the static function approximation application, the
recurrent NOE neural network is sensitive even to small perturbations affecting the
knowledge space of the network.

Figure 5: γ as function of the hidden units, ε =0.04, δ =0.01

TLFeBOOK

36 Alippi

We identified the dynamic system with a NARMAX neural network
characterised by 5 hidden units and the structure given in Figure 9. For such
topology we selected the regressor vector

 [])2(),1(),2(),1(),2(),1(−−−⋅−−−= tetetytytutuϕ

Figure 10 shows the ()γγγ pp ˆˆ = curve. It is interesting to note that the
NARMAX neural network is less robust than the corresponding NOE model. The
basic reason for such behaviour is due to the fact that the recurrent model does not
receive directly as input the fed-back network output but only the residual e.

During training the NOE model must somehow learn more deeply the concept
of stability since even small variations of weights associated with the training phase
weights update would produce a trajectory diverging from the system output to be
mimicked. This effect is due to the pure fed-back structure of the NOE model which

Figure 6: The input and the corresponding output of the dynamic system

Figure 7: The considered NOE neural network

TLFeBOOK

Robustness in Neural Networks 37

receives as inputs past predicted output and not direct information from the process.
Interestingly, this requires the neural model to implicitly learn, during the training
phase, the concept of robustness as proven by the ()γγγ pp ˆˆ = curve. Conversely,
the NARMAX model has a smoother and less complex training phase since it
receives fresh information directly from the process (y values) which help the neural
model to be stable. As such, the training procedure will not search for weights
configuration particularly robust since small deviations, which could make the
system unstable, will be directly stabilised by the true information coming from the
process.

Figure 8: The γp̂ function for the NOE neural network

Figure 9: The considered NARMAX neural network

TLFeBOOK

38 Alippi

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

gamma

Pγ

CONCLUSION
The main results of the chapter can be summarised as follows. Once given a trained
neural network:
• the effects of perturbations affecting the network weights can be evaluated

regardless of the topology and structure of the neural network, the strength of
the perturbation by considering a probabilistic approach;

• the robustness/sensitivity analysis can be carried out with a Poly-time algorithm
by resorting to Randomised Algorithms;

• the analysis is independent from the figure of merit considered to evaluate the
loss in performance induced by the perturbations.

REFERENCES
Alippi, C. (2002). Randomized Algorithms: A system-level, Poly-time analysis of

robust computation. IEEE Transactions on Computers. 51(7).
Alippi, C. & Briozzo, L. (1998). Accuracy vs. precision in digital VLSI architectures

for signal processing. IEEE Transactions on Computers, 47(4).

Figure 10: The γp̂ function for the NARMAX neural network

TLFeBOOK

Robustness in Neural Networks 39

Alippi, C., Piuri, V. & Sami, M. (1995). Sensitivity to Errors in Artificial Neural
Networks: A Behavioural Approach. IEEE Transactions on Circuits and
Systems: Part 1, 42(6).

Bai, E., Tempo, R. & Fu, M. (1997). Worst-case properties of the uniform
distribution and randomized algorithms for robustness analysis. IEEE-American
Control Conference, Albuquerque, NM.

Bhattacharyya, S.P, Chapellat, H. & Keel, L.H. (1995). Robust Control: The
Parametric Approach. Englewoods Cliffs, NJ: Prentice Hall.

Calafiore, G., Dabbene, F. & Tempo, R. (1999). Uniform sample generation of
vectors in lp balls for probabilistic robustness analysis. In Recent Advances
in Control, Springer-Verlag.

Chen, X. & Zhou, K. (1997). On the probabilistic characterisation of model
uncertainty and robustness. Proceedings IEEE-36th Conference on Decision
and Control, San Diego, CA.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Ann. Math. Stat. 23.

Djavdan, P., Tulleken, H., Voetter, M., Verbruggen, H. & Olsder, G. (1989).
Probabilistic Robust Controller Design. Proceedings IEEE-28th Conference
on Decision and Control, Tampa, FL.

Dundar, G., Rose, K. (1995). The effects of Quantization on Multilayer Neural
Networks, IEEE Transactions of Neural Networks. 6(6).

Hassoun, M.H. (1995). Fundamentals of Artificial Neural Networks, The MIT
Press.

Hertz, J., Krogh, A. & Palmer, R.G. (1991). Introduction to the Theory of
Neural Computation, Addison-Wesley Publishing Co.

Holt, J. & Hwang, J. (1993). Finite precision error analysis of neural network
hardware implementations. IEEE Transactions on Computers. 42(3).

Ljung, L. (1987). System Identification, theory for the user, Prentice-Hall.
Ljung, L. Sjoberg, J. & Hjalmarssoon, H. (1996). On neural networks model

structures in system identification. In Identification, Adaptation, Learning.
NATO ASI series.

Norgaard, M. (2000). Neural Network-Based System Identification Toolbox.
Piché, S. (1995). The selection of weights accuracies for Madalines. IEEE

Transactions on Neural Networks. 6(2).
Stevenson, M., Winter, R.& Widrow, B. (1990). Sensitivity of Feedforward neural

networks to weights errors, IEEE Transactions on Neural Networks. 1(1).
Tempo, R. & Dabbene, F. (1999). Probabilistic Robustness Analysis and Design

of Uncertain Systems. Progress in Systems and Control Theory. 25.

TLFeBOOK

40 Alippi

Vidyasagar, M. (1996). A Theory of Learning and Generalisation with
Applications to Neural Networks and Control Systems. Berlin: Springer-
Verlag.

Vidyasagar, M. (1998). Statistical learning Theory and Randomized algorithms for
Control. IEEE-Control systems.

TLFeBOOK

Helicopter Motion Control 41

Chapter III

Helicopter Motion Control
Using a General Regression

Neural Network
T.G.B. Amaral

Superior Technical School of Setúbal – IPS, Portugal

M.M. Crisóstomo
University of Coimbra, Portugal

V. Fernão Pires
Superior Technical School of Setúbal – IPS, Portugal

Copyright © 2003, Idea Group Inc.

ABSTRACT
This chapter describes the application of a general regression neural network
(GRNN) to control the flight of a helicopter. This GRNN is an adaptive
network that provides estimates of continuous variables and is a one-pass
learning algorithm with a highly parallel structure. Even with sparse data in
a multidimensional measurement space, the algorithm provides smooth
transitions from one observed value to another. An important reason for
using the GRNN as a controller is the fast learning capability and its non-
iterative process. The disadvantage of this neural network is the amount of
computation required to produce an estimate, which can become large if
many training instances are gathered. To overcome this problem, it is
described as a clustering algorithm to produce representative exemplars
from a group of training instances that are close to one another reducing the
computation amount to obtain an estimate. The reduction of training data
used by the GRNN can make it possible to separate the obtained representative

TLFeBOOK

42 Amaral, Crisóstomo and Pires

exemplars, for example, in two data sets for the coarse and fine control.
Experiments are performed to determine the degradation of the performance
of the clustering algorithm with less training data. In the control flight system,
data training is also reduced to obtain faster controllers, maintaining the
desired performance.

INTRODUCTION
The application of a general regression neural network to control a non-linear

system such as the flight of a helicopter at or near hover is described. This general
regression neural network in an adaptive network that provides estimates of
continuous variables and is a one-pass learning algorithm with a highly parallel
structure. Even with sparse data in a multidimensional measurement space, the
algorithm provides smooth transitions from one observed value to another. The
automatic flight control system, through the longitudinal and lateral cyclic, the
collective and pedals are used to enable a helicopter to maintain its position fixed
in space for a long period of time. In order to reduce the computation amount of the
gathered data for training, and to obtain an estimate, a clustering algorithm was
implemented. Simulation results are presented and the performance of the controller
is analysed.

HELICOPTER MOTION CONTROL
Recently, unmanned helicopters, particularly large-scale ones, have been

expected not only for the industrial fields such as agricultural spraying and aerial
photography, but also for such fields as observation, rescuing and fire fighting. For
monotonous and dangerous tasks, an autonomous flight control of the helicopter is
advantageous.

In general, the unmanned helicopter is an example of an intelligent autonomous
agent. Autonomous flight control involves some difficulties due to the following:
• it is non-linear;
• flight modes are cross-coupled;
• its dynamics are unstable;
• it is a multivariate (i.e., there are many input-output variables) system;
• it is sensitive to external disturbances and environmental conditions such as

wind, temperature, etc;
• it can be used in many different flight modes (e.g., hover or forward flight), each

of which requires different control laws;
• it is often used in dangerous environments (e.g., at low altitudes near

obstacles).

TLFeBOOK

Helicopter Motion Control 43

These characteristics make the conventional control difficult and create a
challenge to the design of intelligent control systems.

For example, although helicopters are non-linear systems, NN controllers are
capable of controlling them because they are also inherently non-linear. The
instabilities that result from time delays between changes in the system input and
output can be addressed with the previous learning of the network with a set of data
that represents the pilots knowledge to stabilize the helicopter. Linear NN can be
implemented to compensate the cross-couplings between control inputs, mainly
when the helicopter makes a significant change in its flight.

Therefore, a supervised general regression neural network can be used to
control the flight modes of an unmanned helicopter. The regression is the least-
mean-squares estimation of the value of a variable based on data samples. The term
general regression implies that the regression surface is not restricted by being
linear. If the values of the variables to be estimated are future values, the general
regression network (GRNN) is a predictor. If they are dependent variables related
to input variables in a process, system or plant, the GRNN can be used to model
the process, system or plant. Once the system is modelled, a control surface can
be defined in terms of samples of control variables that, given a state vector of the
system, improve the output of the system. If a GRNN is trained using these samples,
it can estimate the entire control surface, becoming a controller. A GRNN can be
used to map from one set of sample points to another. If the target space has the
same dimension as the input space, and if the mapping is one-to-one, an inverse
mapping can easily be formed using the same examples. When the variables to be
estimated are for intermediate values between given points, then the GRNN can be
used as an interpolator.

In all cases, the GRNN instantly adapts to new data points. This could be a
particular advantage for training robots to emulate a teacher or for any system
whose model changes frequently.

SYSTEM MODELLING
The helicopter control is one of the popular non-linear educational control

problems. Due to its highly non-linear dynamics, it gives the possibility to demonstrate
basic features and limits of non-linear control concepts. Sugeno (1997, 1998)
developed a fuzzy-logic based control system to replace the aircraft’s normal set
of control inputs. Other researchers, such has Phillips et al. (1994), Wade et al
(1994), and Wade and Walker (1994), have developed fuzzy logic flight controls
describing systems that include mechanisms for discovering and tuning fuzzy rules
in adaptive controllers. (Larkin, 1984) described a model of an autopilot controller
based on fuzzy algorithms. An alternative approach to real-time control of an

TLFeBOOK

44 Amaral, Crisóstomo and Pires

autonomous flying vehicle based on behavioral, or reactive, approach is proposed
by Fagg et al. (1993). A recurrent neural network used to forward modeling of
helicopter flight dynamics was described by Walker and Mo (1994). The NN-
based controllers can indirectly model human cognitive performance by emulating
the biological processes underlying human skill acquisition.

The main difference between NN-based controllers and conventional control
systems is that, in the NN case, systems are built from indirectly representations of
control knowledge similar to those employed by skilled humans, while in the
conventional design case, a deep analytical understanding of the system dynamics
is needed. The ability of humans to pilot manned helicopters with only the qualitative
knowledge indicate that NN-based controllers with similar capabilities can also be
developed.

The helicopter can be modelled as a linear system around trim points, i.e., a
flight with no accelerations and no moments. The state space equations are a natural
form, which can represent the helicopter motion. The general mathematical model
is given by:

BuAxx +=
.

c

cDuCxy +=

where x, uc and y are the state vector, control vector and output vector,
respectively.

The helicopter used to simulate the flight in hover position was a single main
rotor helicopter of 15,000 pounds. The control and state vectors are defined as:

[]dcba
T

cu δδδδ= (1)

[]zyrqpwvuxT xϕθφ= (2)

where
δa is the collective control [inches];
δb and δc are the longitudinal and lateral cyclic controls, respectively
 [inches];

TLFeBOOK

Helicopter Motion Control 45

δd is the pedal control [inches];
u, v and w are the perturbation linear velocities [ft/sec];
p, q and r are the perturbation angular velocities [rad/sec];
φ , θ and ϕ are the perturbation euler angles for roll, pitch and yaw [rad];
x , y and z are the perturbation linear displacements over the ground [ft].

Figure 1 shows the coordinate system to describe the motion of the helicopter.
The origin of the helicopter axes is placed on the center of gravity.

The thrust of the main rotor, thus mainly the vertical acceleration, is controlled
by the collective control (δa). The pitching moment, that is, nose pointing up or
down, is controlled by the longitudinal cyclic control (δb). The rolling moment, that
is, right wing tip down, left wing tip up, and vice versa, is controlled by the lateral
cyclic control (δc). The yawing moment, that is, nose left and right, is controlled
by the pedal control (δd).

The corresponding differential equations that represent the behavior of the
helicopter in hover position are:

dcb

arqpvu
dt
du

δδδ

δθ

0043.025.079.2

118.019.3215.65.11688.116032.0069.0

+−−

+−−++−−=

Figure 1: Helicopter coordinates

TLFeBOOK

46 Amaral, Crisóstomo and Pires

dcba

rqpwvu
dt
dv

δδδδθ

φ

39.1665.014.0023.0

14.3275.303.3815.4300021.0085.0017.0

−+−−+

+++−−−=

cba

rqpwv
dt
dw

δδδ

θφ

01.0107.023.9

404.085.13.13574.4699.7257.00021.0

−−−

−++++−−=

dcb

arqpwvu
dt
dp

δδδ

δ

15.558.87.13

82.12.66416.50432.60270021.0687.045.0

−+−

−++−−−=

dcb

arqpwvu
dt
dq

δδδ

δ

75.043.313.37

966.03.125.157445.1537043.0429.0665.0

+++

−−−−−+=

dcb

arqpwvu
dt
dr

δδδ

δ

78.40075.015.0

97.259.126628.440.3690064.0515.00214.0

++−

+−−−++−=

p
dt
d =φ

q
dt
d =θ

r
dt
d =ϕ

u
dt
dx =

v
dt
dy =

w
dt
dz =

TLFeBOOK

Helicopter Motion Control 47

Figure 2: Root locus of the helicopter model

(a)

(b)

Since each motion is not independent of δa, δb, δc and δd , there exists a cross-
coupling.

Figure 2 shows the root locus for the model described above. Figure 2(a)
shows the root locus, considering the collective control as the input and the vertical
displacement as the output. In Figure 2(c), the longitudinal cyclic and the forward
displacement are the input and the output, respectively. Figure 2(e) shows the root
locus considering the lateral cyclic as the input and the lateral displacement as the
output. Figures 2(b), (d) and (f) show the zoom of the region near the imaginary axis
as well as the roots that dominate the transient response. In general, the contribution

TLFeBOOK

48 Amaral, Crisóstomo and Pires

Figure 2: Root locus of the helicopter model (continued)

(c)

in the time response of roots that lie relatively far to the left in the s-plane will be small.
These three Figure s clearly show that some of the eigenvalues corresponding to the
helicopter model are in the right side of the s-plane, with positive real-part values,
making the system unstable.

(d)

TLFeBOOK

Helicopter Motion Control 49

Figure 2: Root locus of the helicopter model (continued)

GENERAL REGRESSION NEURAL NETWORK
The generalized regression neural networks are memory-based feed-forward

networks originally developed in the statistics literature by Nadaraya (1964) and
known as Nadaraya-Watson kernel regression. Then the GRNN was ‘re-
discovered’ by Specht (1991) and Chen, C. (1996), with the desired capability of

(e)

(f)

TLFeBOOK

50 Amaral, Crisóstomo and Pires

learning in a one-shot manner from incoming training data being independent upon
time-consuming iterative algorithms. This quick learning ability allows the GRNN
to adapt to changing system parameters more rapidly than other methods such as
genetic algorithms, back-propagation or reinforcement learning. This is achieved by
the estimation of continuous variables with a single training instance and refining this
estimation in a non-iterative manner since the training data is added to the network.
Therefore, this neural network can be used as an intelligent controller for the
autonomous helicopter.

GRNN Architecture
The GRNN is a special extension of the radial basis function network. This

neural network is based on nonlinear regression theory consisting of four layers: the
input layer, the pattern layer, the summation layer and the output layer (see Figure
3). It can approximate any arbitrary mapping between the input and output vectors.
While the neurons in the first three layers are fully connected, each output neuron
is connected only to some processing units in the summation layer. The summation
layer has two different types of processing units: the summation units and the division
unit. The number of summation units in the summation layer is always the same as
the number of GRNN output units. The division unit only sums the weighted
activations of the pattern units without using any activation function. Each of the
output units is connected only to its corresponding summation unit and to the division
unit. There are no weights in these connections. The function of the output units
consists of a simple division of the signal coming from the summation unit by the
signal coming from the division unit.

Figure 3: Topology of the generalized regression neural network

In
pu

t V
ec

to
r

O
ut

pu
t V

ec
to

r

1T

2T

3T

pT

Input Layer

Pattern Layer

Summation Layer

Output Layer

D

S

S

S

S - summation unit
D - division unit

TLFeBOOK

Helicopter Motion Control 51

Consider X and Y independent and dependent variables respectively. The
regression of Y on X is the computation of the most probable value of Y for each
value of X based on a finite number of possibly noisy measurements of X and the
associated values of Y. The variables X and Y can be vectors. In parametric
regression, some functional form with unknown parameters, ai, is assumed and the
values of the parameters are chosen to make the best fit to the observed data. For
example, in linear regression, the output Y is assumed to be a linear function of the
input X, and the unknown parameters ai are linear coefficients. In nonparametric
regression, no assumption about the statistical structure of incoming training data is
made.

The equation form used for the GRNN is presented in (3) and (4) (Specht,
1991). The resulting regression, which involves summations over the observations,
is directly applicable to problems involving numerical data.

() ()i
T

ii XXXXD −−=2 (3)

()
∑

∑

=

=

 −

 −

=
n

i

i

n

i

i
i

D

D
Y

XY

1
2

2

1
2

2

^

2
exp

2
exp

σ

σ
(4)

Xi and iY are earlier samples that compose the training data set and n
represents the number of training data.

The estimated output ()XY
^

 is a weighted average of all the observed values
Yi, where each observed value is weighted exponentially according to the Euclidean
distance between X and Xi. The smoothing parameter σ (or bandwidth) controls
how tightly the estimate is made to fit the data. Figure 4 shows the shapes of the
ith pattern unit node in the pattern layer Ti of the GRNN for three different values
of the smoothing parameter. The output value in each pattern unit Ti is given by the
following expression:

 −−= 22 2exp σii XXT (5)

TLFeBOOK

52 Amaral, Crisóstomo and Pires

Figure 4: Structure of the ith pattern unit

-1/sigma

-1/sigma

-1/sigma

yi

x1

x2

xn

T i

where ℜ→ℜn
iT : and pi ,...,1= represents all the pattern units in the pattern

layer.
When the smoothing parameter σ is made large, the estimate is forced to be

smooth and in the limit becomes a multivariate Gaussian with covariance σ2I. On
the other hand, a smaller σ allows the estimate to more closely fit the data and
assume non-Gaussian shapes (see Figure 5(a)). In this case, the disadvantage
happens when the wild points could have a great effect on the estimate. As σ
becomes large, ()XY

^ assumes the value of the sample mean of the observed iY (see
Figure 5(c)). When σ goes to 0, ()XY

^ becomes the value of the Yi associated with
the data closest to X. For intermediate values of σ , all values of Yi are used, but
those corresponding to observed values closer to X are given heavier weight (see
Figure 5(b)).

If we have much confidence in the input data, a small σ can be used to give
greater weight to individual measurements. However, if there is uncertainty in the
input data due to noise, a large σ must be used to reduce the effect of spurious
measurements on an estimate. The optimisation of the smoothing parameter is
critical to the performance of the GRNN. Usually this parameter is chosen by the
cross-validation procedure or by esoteric methods that are not well known in the
neural net literature.

In the next subsections it will be shown the application of the GRNN to model
a piecewise linear function, and to control an unmanned helicopter. It is also
discussed the clustering algorithm to obtain the representative samples between the
training data (Lefteri, 1997).

TLFeBOOK

Helicopter Motion Control 53

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

X

T
(X

)

Figure 5: Possible shapes for different smoothing parameter values

-4 -2 0 2 4
0.92

0.93

0 .94

0 .95

0 .96

0 .97

0 .98

0 .99

1

T
(X

)

X

-4 -2 0 2 4
0

0.2

0 .4

0 .6

0 .8

1

T
(X

)

X

(a) 1.0=σ

(b) 1=σ

(c) 10=σ

TLFeBOOK

54 Amaral, Crisóstomo and Pires

(x , x)21 22
r

(x , x)11 12

r

(x , x)31 32

Input Data Vector X

x i1

x i2

Figure 6: Cluster generation

Clustering and Adaptation to Nonstationary Statistics
For some problems, the number of sample points (X, Y) may be not sufficient

since it is desired to use all the data obtainable directly in the estimator (4). In other
problems, the number of sample points can be sufficiently large, becoming no longer
practical to assign a separate node to each sample. There exist various clustering
techniques that can be used to group samples. Therefore the group can be
represented by only one node (Moody & Darken, 1989), (Burrascano, 1991), and
(Tou & Gonzalez, 1974). A sample point belongs to a group if the distance between
this sample point and the cluster center is less than a specific value. This value, which
can be considered the radius of influence r of the cluster, must need to be specified
before the training starts.

In the developed clustering algorithm, representative samples are produced
from a group of training instances that are close to one another. The training is
completed after presenting to the GRNN input layer, only once, each input-output
vector pair from the training set. The Euclidean distance to obtain the representative
samples and to reject all the other data points was used in the algorithm.

Suppose that we have a set of n data samples {(Xi,Yi)∈(X,Y); i = 1, ... , n}
where X and Y represent the input and output data sets, respectively. Xi and Yi are
a 2D vector (xi1 , xi2) and a single value, respectively. Initially, the first sample point
(X1 , Y1) in the training set becomes the center of the cluster of the first pattern unit
at X. The next sample point is then compared with this center of the first pattern unit,
and it is assigned to the same cluster (pattern unit) if its distance from this center is
less than the prespecified radius of influence. Then, equation (7) should be updated
for this cluster. Otherwise, if the distance iXX − is higher than r, then the sample
becomes the center of the cluster of the next pattern unit. Figure 6 shows how the
clustering algorithm works considering three points (x11, x12) , (x21 , x22) and (x31,

TLFeBOOK

Helicopter Motion Control 55

x32). The first two points belong to the same cluster because the distance between
them is less than r. The third point is the center of the new cluster since the distance
is higher than r.

In the same manner, all the other sample points are compared one-by-one with
all pattern units already set, and the whole pattern layer is thus gradually built. During
this training, the determined values of individual elements of the center clusters are
directly assigned to the weights in connections between the input units and the
corresponding pattern units.

After the determination of the cluster centers, the equation (4) can then be
rewritten as (Specht, 1991):

()
∑

∑

=

=

 −

 −

=
p

i

i
i

p

i

i
i

D
B

D
A

XY

1
2

2

1
2

2

^

2
exp

2
exp

σ

σ
(6)

where

() ()
() ()

+−=

+−=

11

1

kBkB

YkAkA

ii

jii
(7)

The value np 〈 represents the number of clusters. Ai(k) and Bi(k) are the
coefficients for the cluster i after k samples. Ai(k) is the sum of the Y values and Bi(k)
is the number of samples assigned to cluster i . The Ai(k) and Bi(k) coefficients are
completely determined in one iteration for each data sample.

Reducing the Number of Clusters in Dynamic Systems
If the network is used to model a system with changing characteristics, it is

necessary to eliminate the clusters that were not updated during a period of time.
The justification for this is that in the dynamic systems appears new cluster centers
that represent the new behavior of the model. Then, the number of clusters will
increase and also the computation time to produce an output. Since the A and B
coefficients can be determined by using the recursive equations (7), it is introduced
a forgetting function allowing to reduce the number of clusters as shown in the
following expressions,

TLFeBOOK

56 Amaral, Crisóstomo and Pires

() ()

() ()

−−+

−−=

−−+

−−=

ττ

ττ

ii
ii

j
ii

ii

tt
kBkB

Y
tt

kAkA

exp1exp1

exp1exp1

(8)

and

() ()

() ()

−−=

−−=

τ

τ

i
ii

i
ii

tkBkB

t
kAkA

exp1

exp1

(9)

Equation (8) is the update expression when a new sample is assigned to the
cluster i. Equation (9) is applied to all other clusters. The parameters t and τ are the
time passed after the last update of the cluster i and a constant that determines when
the cluster disappears after the last update, respectively. Figure 7 shows the
exponential decay and increase functions represented by solid and dashed lines
respectively. The exponential decay function will attenuate all the coefficients A and
B of the clusters. The increasing exponential function allows the new sample data
to have an influence in the local area around its assigned cluster center.

When the coefficient B is zero then the corresponding cluster would be
eliminated. For example, considering Figure 7, if the cluster i is not updated during
60 seconds then the cluster i (and its associated Ai and Bi coefficients) will be
eliminated.

Comparison with other Non-Linear Regression Techniques
The advantages of GRNN relative to other non-linear regression techniques

are:
1. The network learns in one pass through the data and can generalize from

samples as soon as they are stored.
2. With the increasing number of observed samples, the estimates converge to the

conditional mean regression surfaces. However, using a few number of
samples, it forms very reasonable regression surfaces.

TLFeBOOK

Helicopter Motion Control 57

3. The estimate is limited within a range defined by the minimum and maximum
of the observations.

4. The estimate cannot converge to poor solutions corresponding to local minima
of the error criterion.

5. A software simulation is easy to develop and to use.
6. The network can provide a mapping from one set of sample points to another.

If the mapping is one-to-one, an inverse mapping can easily be generated from
the same sample points.

7. The clustering version of GRNN, equation (6), limits the numbers of nodes.
Optionally it can provide a mechanism for forgetting old data.

The main disadvantage of GRNN is the amount of computation required to
produce an estimate, since it can become large if many training instances are
gathered. To overcome this problem it was implemented a clustering algorithm. This
additional processing stage brings the questions regarding when to do the initial
clustering and if the re-clustering should be done after additional training data is
gathered.

GRNN-Based Model
The described GRNN type has many potential uses as models and inverse

models (see Figure 8). A simple problem with one independent variable is used as
an example to show how the regression technique is applied to modelling a system.
Suppose that we have a piecewise linear function and training instances taken from
this function (see Figure 9) (Montgomery, 1999). The samples Xi = [–4,–3,–2,–
1,0,1,2,3,4] and Yi = [–1,–1,–1,–1,–1,0,1,1,1] are represented by circles.

0 10 20 30 40 50 60
0

0.2

0 .4

0 .6

0 .8

1

T im e [s]

F
or

ge
tti

ng
 fa

ct
or

Figure 7: Exponential decay function

TLFeBOOK

58 Amaral, Crisóstomo and Pires

Since GRNN always estimates using a weighted average of the given samples,
the estimate is always within the observed range of the dependent variable. In the
input range, the estimator takes on a set of curves that depend on σ, each of which
is a reasonable approximation to the piecewise linear function (see Figure 9). Figure
10 shows the GRNN estimates of this function for different sigma values. For σ =
0.5 the curve is the best approximation. A small sigma allows the estimate to more
closely fit the training data, while a large sigma produces a smoother estimate. It is
possible to over fit the data with very small values of σ.

Besides the advantages of the GRNN when compared with other non-linear
regression techniques, there exists another four benefits from the use of the GRNN.
First, it has a non-iterative, fast-learning capability. Second, the smoothing parameter,
σ, can be made large to smooth out noisy data or made small to allow the estimated
regression surface to be as non-linear as required to more closely approximate the
actual observed training data. Third, it is not necessary to specify the form of a
regression equation. Finally, the addition of new samples to the training data set
does not require re-calibrating the model. The disadvantage of the network is the

Figure 8: Modelling the system using GRNN

-4 -3 -2 -1 0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

X input

Y
 o

ut
pu

t

Training Data

Figure 9: Linear function with training set

System

GRNN Model

Inputs Outputs

TLFeBOOK

Helicopter Motion Control 59

difficulty to analyze and to provide a clear understanding of how its behavior is
related to its contents. The inexistence of an intuitive method for selecting the optimal
smoothing parameter is also a difficult task to solve.

GRNN-Based Controller
The non-linear control helicopter and robotic systems are particularly good

application areas that can be used to demonstrate the potential speed of neural
networks implemented in parallel hardware and the adaptability of instant learning.
First, the GRNN learns the relation between the state vector of the system and the
control variables. After the GRNN-based model is trained, it can be used to
determine control inputs. One way in which the neural network could be used to
control a system is shown in Figure 11.

The GRNN is not trained in the traditional neural network sense where weights
are adjusted iteratively. Rather, all training data is stored in memory (thus the term
memory-based network) and only when the output is necessary for a different input

-4 -3 -2 -1 0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

X

E
st

im
at

ed
 O

ut
pu

t

GRNN for different s igma values

sigma = 0.25
sigma = 0.5
s igma = 1
Training Data

Figure 10: Example of GRNN application

GRNN Controller

Helicopter
M odel

Control Inputs Outputs
Desired
Outputs

Present Output S tate

Figure 11: A GRNN controller

TLFeBOOK

60 Amaral, Crisóstomo and Pires

a new computation is performed. In controlling the helicopter each data training is
a vector with the input variables and the corresponding output for each controller.
Only the samples that represent the cluster centers are used to populate the
network. The reduction of training data used by the GRNN is an important problem
because we can obtain a faster controller maintaining a good performance. It is also
possible to separate the obtained representative clusters' center, for example, in
two data sets for the coarse and fine control.

To control the helicopter flight mode in hover position, four data sets
corresponding to each input control were used. In each data set exists a set of
vectors that correspond to the representative clusters obtained after the clustering
algorithm is applied. The vector structure in each data set is given in Table 1.

SIMULATED RESULTS
An experiment was performed to determine the extent to which performance

of the clustering algorithm degrades with less training data. Figure 12 shows the
output of the sine function and the model when the identification procedure was
carried out for only nine patterns instead of the fifty-five used to represent the sine
function.

Figures 13 and 14 show the open loop responses of the helicopter displacements
and euler angles corresponding to impulse control inputs in the longitudinal and
lateral cyclic. First it was applied an impulse in the longitudinal control and then in
the lateral control input. The initial conditions for the helicopter model are as follows:

,0,0,0 000 === wvu 0,0126.0,0576.0 000 ==−= ϕθφ .

The initial conditions corresponding to the derivatives of the state variables
described above are zero.

Control Inputs State Variables
Collective { }wza ,,δ

Longitudinal cyclic { }quxb ,,,, θδ

Lateral cyclic { }pvyc ,,,, φδ

Pedals { }rd ,,ϕδ

Table 1: Vector prototype for each control input

TLFeBOOK

Helicopter Motion Control 61

0 50 100 150 200 250 300
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

T im e [sec]

Li
ne

ar
 D

is
pl

ac
em

en
t [

ft]

Longitudinal D isplacement
Lateral D isplacement
Vertical D isplacement

Figure 13: Simulated results of ()zyx ,, to an impulse control input, in the
longitudinal cyclic

0 10 20 30 40
-1

-0.5

0

0.5

1

X

E
st

im
at

ed
 O

ut
pu

t

sine function
GRNN model

Figure 12: Output of sine function (solid line) and of GRNN model (dotted
line) after training with only nine patterns

Figures 15 to 23 shows the system response using the GRNN controller using
the data set for each controller. Each data set contains the representative clusters
obtained after the clustering process. Figures 15 to 17 show the displacement of the
helicopter in the longitudinal, lateral and vertical axis, respectively. These three
Figures show that the higher displacement changes occur in the forward and lateral
axis rather than in the vertical axis. This happens because the impulse control inputs
were applied to the longitudinal and lateral cyclic which are the commands to control
the forward and lateral displacements of the helicopter.

Figure 18 shows the trajectory of the helicopter in the 2D plan. The arrows
indicate the direction of the helicopter displacement after applied impulses in the
control inputs. After approximately five minutes the helicopter is stabilized in the
initial position (i.e. 0=== zyx).

TLFeBOOK

62 Amaral, Crisóstomo and Pires

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

T ime [sec]

E
ul

er
 A

ng
le

s
[ra

d]

Roll Angle
Pitch Angle
Yaw Angle

Figure 14: Simulated results of ()ϕθφ ,, to an impulse control input, in the
longitudinal cyclic

Figure 19 shows the roll, pitch and yaw angles. Even when the initial conditions
of the roll and pitch angles are different from zero, these angles stabilize, permitting
the control of the helicopter.

Figures 20 to 23 show the control inputs applied to the helicopter. The control
inputs were limited to ±5V for simulate practical limitations of the actuators. Since
the higher perturbation occurs in the longitudinal and lateral displacements than it
was the longitudinal and lateral cyclic control inputs the actuators with higher
performance.

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T im e [sec]

Lo
ng

itu
di

na
l D

is
pl

ac
em

en
t [

ft]

Figure 15: Simulated results of x for an impulse control input, in the
longitudinal and lateral cyclic

TLFeBOOK

Helicopter Motion Control 63

Figure 17: Simulated results of z for impulse control inputs, in the
longitudinal and lateral cyclic

0 50 100 150 200 250 300
-0.005

0

0.005

0.01

0.015

0.02

0.025

V
er

tic
al

 D
is

pl
ac

em
en

t [
ft]

T im e [sec]

Since for each flight mode it can be used one distinct GRNN controller, then
it is not necessary to reduce the number of clusters. Each controller has a cluster set
that represents the dynamic behavior of the helicopter for the specific flight mode.

CONCLUSIONS
To control the displacement of a single main rotor helicopter of a 15,000-

pound using the longitudinal, lateral and collective control inputs, three GRNN

0 50 100 150 200 250 300
-10

0

10

20

30

40

50

60

Time [sec]

La
te

ra
l D

is
pl

ac
em

en
t [

ft]

Figure 16: Simulated results of y for impulse control inputs, in the
longitudinal and lateral cyclic

TLFeBOOK

64 Amaral, Crisóstomo and Pires

-0.5 0 0.5 1 1.5
-10

0

10

20

30

40

50

60

La
te

ra
l D

is
pl

ac
em

en
t [

ft]

Long itud inal D isplacem ent [ft]

Figure 18: Trajectory of the helicopter in the ()yx, plan

controllers have been used. The direction of the helicopter nose was controlled by
the pedals control input using another GRNN controller. With these controllers it
was possible to enable the helicopter to maintain its stationary position for a long
period of time. The advantage of the GRNN controller is the fast-learning capability
and the non iterative process. For many gathered training instances, the computation
amount became large. Therefore, to overcome this problem a clustering algorithm
was implemented.

Figure 19: Simulated results of ()ϕθφ ,, to an impulse control input, in the
longitudinal and lateral cyclic

0 50 100 150 200 250 300
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

T im e [sec]

E
ul

er
 A

ng
le

s
[ra

d]

Roll Angle
P itch Angle
Yaw Angle

TLFeBOOK

Helicopter Motion Control 65

Figure 21: Simulated result of the longitudinal cyclic control

0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

3

4

5

Lo
ng

itu
di

na
l C

yc
lic

 C
on

tr o
l [

in
ch

es
]

T im e [sec]

FUTURE DIRECTIONS
A fuzzy algorithm can also control the helicopter. Fuzzy rule base systems are

linguistic in nature and can be inspected by a human expert. However, GRNN and
fuzzy algorithms could be used together. Fuzzy logic gives a common framework
for combining numerical training data and expert linguistic knowledge along with the
compact transparency and computational efficiency of rule bases, while the GRNN

0 50 100 150 200 250 300
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Time [sec]

C
ol

le
ct

iv
e

C
on

tro
l [

in
ch

es
]

Figure 20: Simulated result of the collective control input

TLFeBOOK

66 Amaral, Crisóstomo and Pires

Figure 23: Simulated result of the pedals control

0 50 100 150 200 250 300
-1

0

1

2

3

4

5

La
te

ra
l C

yc
lic

 C
on

tro
l [

in
ch

es
]

T ime [sec]

0 50 100 150 200 250 300
-5

0

5

10

15

20
x 10

-3

Time [sec]

P
ed

al
s

C
on

tro
l [

in
ch

es
]

Figure 22: Simulated result of the lateral cyclic control

gives the approach rapid adaptive capability. For this reason, one of the future
research directions may be the hybrid fuzzy logic/GRNN approach.

ACKNOWLEDGMENTS
The authors would like to thank Professor Mark Dreier from Bell Helicopter

Textron, USA. He graciously sent to us his Matlab/Simulink system containing a
helicopter model describing the dynamic behaviour of the helicopter in hover flight
mode.

TLFeBOOK

Helicopter Motion Control 67

REFERENCES
Burrascano, P. (1991, July). Learning vector quantization for the probabilistic

neural network, IEEE Trans. Neural Network, (2), 458-461.
Chen, C. H. (1996). Fuzzy Logic and Neural Network Handbook. McGraw-

Hill.
Fagg, A., Lewis, M., Montgomery, J. & Bekey, G. (1993). The USC autonomous

flying vehicle: An experiment in real-time behavior-based control. Proceed-
ings IEEE/RSJ International Conference on Intelligent Robots and
Systems, Yokohama, Japan, July.

Larkin, L. (1984). A fuzzy logic controller for aircraft flight control. Proceedings
23rd Conference on Decision and Control. Las Vegas, NV. December.

Montgomery, J. F. (1999). Learning Helicopter Control through Teaching by
Showing. PhD dissertation. University of Southern California, Los Angeles,
CA.

Moody, J., & Darken, C. (1989). Fast learning in networks of locally-tuned
processing units, Neural Computation, (1). 281-294.

Nadaraya, E. A. (1964), On estimating regression, Theory Probab. Application
10, 186-190.

Phillips, C., Karr, C. & Walker, G. (1994). A genetic algorithm for discovering
fuzzy logic rules. Proceedings International Fuzzy Systems and Intelligent
Controls Conference, March.

Specht, D.F. (1991). A general regression neural network. IEEE Transactions on
Neural Networks, 2(6), November, 568-576.

Sugeno, M. (1997). The Industrial Electronics Handbook. CRC Press, 1127-
1138.

Sugeno, M. (1998). Recent advances in fuzzy control: Stability issues and
application to an unmanned helicopter. World Automation Congress,
Alaska, May.

Tou, J. T. & Gonzalez, R. C. (1974). Pattern Recognition Principles. Reading,
MA: Addison-Wesley.

Tsoukalas, L.H. & Uhrig, R.E. (1997). Fuzzy and Neural Approaches in
Engineering. A volume in the Wiley Series on Adaptive and Learning
Systems for Signal Processing, Communications, and Control. Simon Haykin,
Series Editor.

Wade, R. & Walker, G. (1994). Fuzzy logic adaptive controller-helicopter
(FLAC-H): A multi-platform, rotary-winged aerial robotic control system.
19th Army Science Conference. Orlando, FL, June.

Wade, R., Walker, G. & Phillips, C. (1994). Combining genetic algorithms and

TLFeBOOK

68 Amaral, Crisóstomo and Pires

aircraft simulations to tune fuzzy rules in a helicopter control system. Ad-
vances in Modelling and Simulation Conference, Huntsville, AL, April.

Walker, G. & Mo, S. (1994). Forward modelling of helicopter flight dynamics
using recurrent neural networks, 19th Army Science Conference, Orlando,
FL, June.

TLFeBOOK

Real-Time Map Building 69

ABSTRACT
A novel biologically inspired neural network approach is proposed for real-
time simultaneous map building and path planning with limited sensor
information in a non-stationary environment. The dynamics of each neuron
is characterized by a shunting equation with both excitatory and inhibitory
connections. There are only local connections in the proposed neural network.
The map of the environment is built during the real-time robot navigation
with its sensor information that is limited to a short range. The real-time robot
path is generated through the dynamic activity landscape of the neural
network. The effectiveness and the efficiency are demonstrated by simulation
studies.

INTRODUCTION
Real-time path planning with collision free in a non-stationary environment is

a very important issue in robotics. There are a lot of studies on the path planning for
robots using various approaches. Most of the previous models use global methods
to search the possible paths in the workspace (e.g., Lozano-Perez, 1983; Zelinsky,

Chapter IV

A Biologically Inspired
Neural Network Approach
to Real-Time Map Building

and Path Planning
Simon X. Yang

University of Guelph, Canada

Copyright © 2003, Idea Group Inc.

TLFeBOOK

70 Yang

1994; Al-Sultan & Aliyu, 1996; Li & Bui, 1998). Ong and Gilbert (1998) proposed
a new searching-based model for path planning with penetration growth distance,
which searches over collision paths instead of the free workspace. Most searching-
based models can deal with static environment only and are computationally
complicated when the environment is complex. Some of the early models deal with
static environment only, and may suffer from undesired local minima (e.g., Ilari &
Torras, 1990; Zelinsky, 1994; Glasius et al., 1994). Some previous robot motion
planning models require the prior information of the non-stationary environment,
including the varying target and obstacles. For example, Chang and Song (1997)
proposed a virtual force guidance model for dynamic motion planning of a mobile
robot in a predictable environment, where an artificial neural network is used to
predict the future environment through a relative-error-back-propagation learning.

Several neural network models were proposed to generate real-time trajectory
through learning (e.g., Li & Ogmen, 1994; Beom & Cho, 1995; Glasius et al., 1994;
1995; Zalama, Gaudiano & Lopez Coronado, 1995; Chang & Song, 1997;
Gaudiano et al., 1996; Yang, 1999; Yang & Meng, 2000a, 2000b, 2001). The
learning based approaches suffer from extra computational cost because of the
learning procedures. In addition, the planned robot motion using learning based
approaches is not optimal, especially during the initial learning phase of the neural
network. For example, Zalama et al. (1995) proposed a neural network model for
the navigation of a mobile robot, which can generate dynamical trajectory with
obstacle avoidance through unsupervised learning.

Glasius et al. (1995) proposed a neural network model for real-time trajectory
formation with collision free in a non-stationary environment. However, this model
suffers from slow dynamics and cannot perform properly in a fast changing
environment. Inspired by Hodgkin and Huxley’s (1952) membrane equation and
the later developed Grossberg’s (1988) shunting model, Yang and Meng (2000a)
proposed a neural network approach to dynamical trajectory generation with
collision free in an arbitrarily changing environment. These models are capable of
planning a real-time optimal path in non-stationary situations without any learning
process. But the planned paths in Glasius et al. (1995) and Yang and Meng (2000a)
do not take into account the clearance from obstacles, which is demanded in many
situations. By introducing inhibitory lateral connections in the neural network, Yang
and Meng (2000b) proposed a new model for path planning with safety
consideration, which is capable of generating a “comfortable” path for a mobile
robot, without suffering either the “too close” (narrow safety margin) or the “too far”
(waste) problems. However, the models in Ilari and Torras (1990), Zelinsky
(1994), Zalama et al. (1995), Glasius et al. (1995) and Yang and Meng (2000a,
2000b) assume that the workspace is known, which is not practically feasible in
many applications.

TLFeBOOK

Real-Time Map Building 71

In this chapter, a novel biologically inspired neural network approach, based
on the model in Yang and Meng (2000b) for path planning of mobile robots with
completely known environment, is proposed for real-time simultaneous map
building and path planning of mobile robots in a dynamic environment, where the
environment is assumed completely unknown. The state space of the topologically
organized neural network is the Cartesian workspace, where the dynamics of each
neuron is characterized by a shunting equation that was derived from Hodgkin and
Huxley’s (1952) membrane model for a biological system. The robot navigation is
based on the target location, and robot sensor readings that are limited to a short
range. The real-time robot path is generated from the neural activity landscape of
the neural network that adapts changes according to the target location and the
known map of the workspace. A map of the environment is built in real time when the
robot is moving toward the target, where the sensor readings are obtained from the
onboard sensors of the mobile robot that are limited to a certain local range only.

THE MODEL
In this section, the originality of the proposed neural network approach is

briefly introduced. Then, the philosophy of the proposed neural network approach
and the model algorithm are presented. Finally, the stability of the proposed model
is proven using both qualitative analysis and a Lyapunov stability theory.

Originality
Hodgkin and Huxley (1952) proposed a computational model for a patch of

membrane in a biological neural system using electrical circuit elements. This
modeling work, together with other experimental work, led them to a Nobel Prize
in 1963 for their discoveries concerning the ionic mechanisms involved in excitation
and inhibition in the peripheral and central portions of the nerve cell membrane. In
Hodgkin and Huxley’s (1952) membrane model, the dynamics of voltage across
the membrane, Vm, is described using a state equation technique such as:

KmKNamNapmp
m

m gVEgVEgVE
dt

dVC)()()(+−+++−= (1)

where Cm is the membrane capacitance. Parameters EK, ENa and Ep are the Nernst
potentials (saturation potentials) for potassium ions, sodium ions and the passive
leak current in the membrane, respectively. Parameters gK, gNa and gp represent the
conductance of potassium, sodium and passive channels, respectively. This model

TLFeBOOK

72 Yang

provided the foundation of the shunting model and led to a lot of model variations
and applications (Grossberg, 1988).

By setting Cm = 1, substituting xi = Ep+Vm, A = gp, B = ENa+Ep, D = Ek−Ep,
Si

e = gNa and Si
i = gK in Eqn. (1), a typical shunting equation is obtained (Ogmen

& Gagne, 1990a, 1990b) as:

)()()()(tSxDtSxBAx
dt
dx i

ii
e
iii

i +−−+−= (2)

where variable xi is the neural activity (membrane potential) of the i-th neuron.
Parameters A, B and D are non-negative constants representing the passive decay
rate, the upper and lower bounds of the neural activity, respectively. Variables Si

e

and Si
i are the excitatory and inhibitory inputs to the neuron (Ogmen & Gagne,

1990a, 1990b; Yang, 1999). This shunting model was first proposed by Grossberg
to understand the real-time adaptive behavior of individuals to complex and
dynamic environmental contingencies (Grossberg, 1973, 1982, 1983, 1988), and
has a lot of applications in biological and machine vision, sensory motor control, and
many other areas (e.g., Grossberg, 1982, 1988; Ogmen & Gagne, 1990a, 1990b;
Ogmen, 1993; Zalama et al., 1995; Gaudiano et al., 1996; Yang, 1999).

Model Algorithm
The fundamental concept of the proposed model is to develop a neural

network architecture, whose dynamic neural activity landscape represents the
limited knowledge of the dynamically varying environment from onboard robot
sensors. By properly defining the external inputs from the varying environment and
internal neural connections, the target and obstacles are guaranteed to stay at the
peak and the valley of the activity landscape of the neural network, respectively. The
target globally attracts the robot in the whole state space through neural activity
propagation, while the obstacles have only local effect in a small region to avoid
collisions and to achieve the clearance from obstacles. The real-time collision-free
robot motion is planned through the dynamic activity landscape of the neural
network.

The neural network architecture of the proposed model is a discrete topologically
organized map that is used in several neural network models (Glasius et al., 1995;
Yang & Meng, 2000a, 2000b). The proposed model is expressed in a finite (F-
) dimensional (F-D) state space, which can be either the Cartesian workspace or
the configuration joint space of a multi-joint manipulator. The location of the i-th
neuron at the grid in the F-D state space, denoted by a vector qi ∈ RF, represents

TLFeBOOK

Real-Time Map Building 73

a position in the workspace or a configuration in the joint space. The target globally
attracts the robot through neural activity propagation, while the obstacles push the
robot only locally in a small region to avoid collision. To take into account the
clearance from obstacles, there are both excitatory and inhibitory lateral connections.
The dynamics of the i-th neuron in the neuron network is given by a shunting
equation:

−++−

+−+−= −

=

−+

=

+ ∑∑][][)(][][)(
11

σj

k

j
ijiij

k

j
ijiii

i xvIxDxwIxBAx
dt
dx

 (3)

where the excitatory and inhibitory inputs are ∑
=

++ +
k

i
jij xwI

1
][][and ∑

=

−− +
k

i
jij xwI

1

][][,
respectively. The external input Ii to the i-th neuron is defined as: Ii = E, if there is
a target; Ii = −E, if there is an obstacle; Ii = 0, otherwise, where E is a very large
positive constant over its total lateral input. Unlike those models in Yang and Meng
(2000a, 2000b) where the whole environment is assumed to be completely known,
the proposed model assumes that initially the environment is completely unknown,
except that the robot knows the target location. Thus the external input Ii depends
on the known information of the environment from its onboard sensors whose
capacity is limited to a certain local range. A map of the environment is building from
the sensor information during the real-time robot navigation.

The function [a]+ is a linear-above-threshold function defined as, [a]+ =
max(a,0), and the non-linear function [a]− is defined as [a]− = max(-a,0). The
weights of the excitatory and inhibitory connections, wij and vij, from the i-th neuron
to the j-th neuron are defined as:

|)(| jiij qqfw −= and ijij wv β= (4)

respectively, where β is a positive constant, β ∈ [0,1], and |qi - qj| represents the
Euclidean distance between vectors qi and qj in the state space. Function f(a) is a
monotonically decreasing function, such as a function defined as: f(a) = µ/a, if 0 <
a < r0; f(a) = 0, if a ≥ r0, where µ and r0 are positive constants. Therefore, it is
obvious that the neural connection weights wij and vij are symmetric. The neuron
has only local connections in a small region (0,r0), i.e., its receptive field is the space
whose distance to the i-th neuron is less than r0. The neurons located within the
receptive field of the i-th neuron are referred as its neighboring neurons. The
parameter k is the total number of neighboring neurons of the i-th neuron. Parameter
σ is the threshold of the inhibitory lateral neural connections. The threshold of the

TLFeBOOK

74 Yang

excitatory connections is chosen as a constant zero. A schematic diagram of the
neural network in 2D is shown in Figure 1, where r0 is chosen as r0 = 2. The receptive
field of the i-th neuron is represented by a circle with a radius of r0.

The proposed neural network characterized by Eqn. (3) guarantees that the
positive neural activity can propagate to the whole state space. However, the
negative activity stays locally only in a small region, due to the existence of the
threshold σ of the inhibitory lateral connections. Therefore, the target globally
influences the whole state space to attract the robot, while the obstacles have only
local effect to avoid collision. In addition, by choosing different β and/or σ values,
the local influence from the obstacles is adjusted, and a suitable strength of clearance
from obstacles is selected. Therefore, the proposed model is capable of planning
the shortest path from the starting position to the target, or a safer path, or the safest
path, depending on the different requirement.

The positions of the target and obstacles may vary with time. The activity
landscape of the neuron network dynamically changes due to the varying external
inputs and the internal lateral connections. The optimal path is generated from the
dynamic activity landscape by a gradient ascent rule. For a given present position
in the workspace or in the robot manipulator joint space, denoted by qp, the next
position qn (also called “command position”) is obtained by:

Figure 1: Schematic diagram of the neural network for robot path planning
when the state space is 2D; the i-th neuron has only 8 lateral connections to
its neighboring neurons that are within its receptive field

r0

i

j

wij

TLFeBOOK

Real-Time Map Building 75

pn ⇐ xpn
 = max{xj, j = 1,2,...,k} (5)

where k is the number of the neighboring neurons, i.e., all the possible next positions
of the present position qp. After the present position reaches its next position, the
next position becomes a new present position. The present position adaptively
changes according to the varying environment. The speed of the robot can be
defined as a function of its distance to the nearest obstacle, e.g., a function defined
as:

 ≥

=
otherwise,/
if,

0

0

ddv
ddv

v
m

m
(6)

where vm is the maximum robot speed, d0 is a positive constant and d0 is the
Euclidean distance from robot to its nearest obstacle.

The dynamic activity landscape of the topologically organized neural network
is used to determine where the next robot position should be. However, when the
robot moves to the next position is determined by the robot moving speed. In a static
environment, the activity landscape of the neural network will reach a steady state,
which will later be proven using the Lyapunov stability theory. Mostly the robot
reaches the target much earlier than the activity landscape reaches the steady state
of the neural network. When a robot is in a dynamically changing environment, the
neural activity landscape will never reach a steady state. Due to the very large
external input constant E, the target and the obstacles stay at the peak and the valley
of the activity landscape of the neural network, respectively. The robot keeps
moving toward the target with obstacle avoidance till the designated objectives are
achieved.

Stability Analysis
In the shunting model in Eqn. (2) and (3), the neural activity xi increases at a

rate of (B−xi)Si
e, which is not only proportional to the excitatory input Si

e, but also
proportional to an auto gain control term (B − xi). Thus, with an equal amount of
input Si

e, the closer the values of xi and B are, the slower xi increases. When the
activity xi is below B, the excitatory term is positive, causing an increase in the neural
activity. If xi is equal to B, the excitatory term becomes zero, and xi will no longer
increase no matter how strong the excitatory input is. In case the activity xi exceeds
B, B-xi becomes negative and the shunting term pulls xi back to B. Therefore, xi
is forced to stay below B, the upper bound of the neural activity. Similarly, the
inhibitory term forces the neural activity to stay above the lower bound −D.

TLFeBOOK

76 Yang

Therefore, once the activity goes into the finite region [−D, B], it is guaranteed that
the neural activity will stay in this region for any value of the total excitatory and
inhibitory inputs (Yang, 1999).

The stability and convergence of the proposed model can also be rigorously
proven using a Lyapunov stability theory. From the definition of [a]+, [a]− and vij,
Eqn. (3) is rewritten into Grossberg’s general form (Grossberg, 1988):

−= ∑

=

)()()(
1

i

N

j
ijii

i xdcxaxa
dt
dx

(7)

by the following substitutions:

<+
≥−

=
0 if
0 if,

)(
ji

ji
ii xxD

xxB
xa

()iiiii
ii

ii xIIAICIB
xa

xb)][][(][][
)(

1)(−+−+ ++−−=

ijij wc −=

and

<−
≥

=
otherwise,0

 if),(
0 if,

)(σσβ jj

jj

jj xx
xx

xd

Since the neural connection weight is symmetric, wij = wji, then cij = cji (symmetry).
Since B and D are non-negative constants and xi ∈ [-D, B], then ai(xi) then ai(xi)
≥ 0 (positivity). Since d’j(xj) = 1 at xj > 0; d’j(xj) = β at xj > σ; and d’j(xj) = 0,
otherwise, then dj(xj) ≥ 0 (monotonicity). Therefore, Eqn. (5) satisfies all the three
stability conditions required by Grossberg’s general form (Grossberg, 1988). The
Lyapunov function candidate for Eqn. (7) can be chosen as:

)()(
2
1)(')(

1,1
kkij

N

kj
kj

N

i
iiiii

x xdxdcdyydybv i ∑∑∫
==

+−= (8)

TLFeBOOK

Real-Time Map Building 77

The derivative of v along all the trajectories is given as:

2

11
)(' j

N

j
ij

N

j
iii dcbda

dt
dv ∑∑

==
−−=

Since ai ≥ 0 and di’ ≥ 0, then dv/dt ≤ 0 along all the trajectories. The rigorous proof
of the stability and convergence of Eqn. (7) can be found in Grossberg (1983).
Therefore, the proposed neural network system is stable. The dynamics of the
network is guaranteed to converge to an equilibrium state of the system.

SIMULATIONS
To demonstrate the effectiveness of the proposed neural network model, the

proposed neural network model for real-time map building and path planning is
applied to a room-like environment in Figure 2A, where the static obstacles are
shown by solid squares. The target is located at position (30,30), while the starting
position of the robot is at (4,4). The neural network has 50×50 topologically
organized neurons, with zero initial neural activities. The model parameters are
chosen as: A = 10 and B = D = 1 for the shunting equation; µ =1, β =0.8, σ = −
0.8 and r0 = 2 for the lateral connections; and E = 100 for the external inputs. Three
cases are carried out. In the first case, same as the models in Yang and Meng
(2000a, 2000b), it is assumed that the environment is completely known by some
additional sensors in the workspace. The generated robot path is shown in Figure
2A, where the robot is represented by circles. It shows that the robot can reach the
target without obstacle avoidance. The neural activity landscape when the robot
arrives at the target location is shown in Figure 2A, where the peak is at the target
location, while the valleys are at the obstacle locations.

In the second case, the environment is assumed to be completely unknown,
except the target location. The onboard robot sensors can “see” in a limited range
within a radius of R = 5 (see the circle in lower right corner of Figure 3A). As shown
in Figure 3A, initially the robot sees some obstacles on its back, but there are no
obstacles in its front direction toward the target. Thus the robot moves straight
forward to the target. However, when the robot arrives at location (16,16), it starts
to sense the obstacle in its front. When the robot arrives at (18,18), the built map
is shown in Figure 3A, where a few obstacles are detected by its onboard sensors,
and the activity landscape is shown in Figure 3B. The robot is moving toward the
target along a collision-free path; more and more obstacles were detected. When
the robot arrives at (18,41), the built map and the activity landscape are shown in

TLFeBOOK

78 Yang

Figure 2: Path planning with safety consideration when the environment is
completely known--A: the dynamic robot path; B: the activity landscape when
the robot reaches the target

0 5 10 15 20 25 30 35 40 45 50

0
5

10
15

20
25

30
35

40
45

50

Start

Target

ObstaclesRobot

A

0
10

20
30

40
50

0

10

20

30

40

50
1

0. 5

0

0.5

1

X
Y

A
ct

iv
ity

B

TLFeBOOK

Real-Time Map Building 79

Figure 3: Map building and path planning with sensor information limited to
a radius or R=5--A and B: the dynamic robot path and the environment map
(A) and the neural activity landscape (B) when the robot arrives at (18,18);
C and D: the dynamic robot path and the environment map (C) and the neural
activity landscape (D) when the robot arrives at (18,41)

R

0 5 10 15 20 25 30 35 40 45 50

0
5

10
15

20
25

30
35

40
45

50

Start

Target

Obstacles

Robot

A

0
10

20
30

40
50

0

10

20

30

40

50
1

0. 5

0

0.5

1

X
Y

A
ct

iv
ity

B

TLFeBOOK

80 Yang

R

0 5 10 15 20 25 30 35 40 45 50

0
5

10
15

20
25

30
35

40
45

50

Start

Target

Obstacles

Robot

C

0
10

20
30

40
50

0

10

20

30

40

50
1

0. 5

0

0.5

1

X
Y

A
ct

iv
ity

D

Figure 3: (continued) (C) the neural activity landscape (D) when the robot
arrives at (18,41)

TLFeBOOK

Real-Time Map Building 81

Figure 4: Map building and path planning with limited sensor information--
A: the robot path and the built map in same case in Figure 3; B: the robot path
and the built map when there are obstacles suddenly placed in its front to close
to the gate to the target when the robot arrives at (42,41) (marked by an
arrow) in the case in left panel

0 5 10 15 20 25 30 35 40 45 50

0
5

10
15

20
25

30
35

40
45

50

Start

Target

Obstacles

Robot
R

A

0 5 10 15 20 25 30 35 40 45 50

0
5

10
15

20
25

30
35

40
45

50

Target

Sudden obstacles

R

Static obstacles

B

TLFeBOOK

82 Yang

Figure 3C and Figure 3D, respectively. The robot continues to move toward the
target. The robot traveling path to reach the target and the built map are shown in
Figure 3A.

In the third case, the condition initially is the same as in Case 2. However, when
the robot arrives at (42, 41), there are obstacles suddenly placed in front of the
robot, which close the gate for the robot to reach the target. The robot has to move
around there, and finally the robot has to move back, pass around the obstacles and
finally reach the target from the other side. The robot path after the sudden obstacles
were placed is shown in Figure 4B. It shows that the robot is capable of reaching
the target with obstacle clearance.

DISCUSSIONS
In this section, the parameter sensitivity of the proposed neural network model

will be discussed. Then a simple model characterized by an additive equation is
obtained from the proposed shunting model by removing the auto gain control terms
and lumping together the excitatory and inhibitory inputs.

Parameter Sensitivity
Parameter sensitivity is a very important factor to be considered when a model

is proposed or evaluated. An acceptable model should be robust, i.e., not very
sensitive to changes in its parameter values. There are only few parameters in the
proposed model in Eqn. (3). The upper and lower activity bounds B and D, the
receptive field parameter r0 and the external input constant E are not important
factors. The passive decay rate A determines the transient response of the neurons,
which is very important for the model dynamics, particularly when the target and the
obstacle are varying fast. The lateral connection weight parameter µ is also an
important factor, which determines the propagation of the neural activity in the
neural network. The relative inhibitory lateral connection parameter β and the
threshold of the inhibitory connections σ determine the strength of the clearance
from obstacles. They are very important factors as well. A detailed discussion
through description and simulation of the model parameters can be found in Yang
and Meng (2000b, 2001).

The proposed model is not very sensitive to the variations of model parameters
and the connection weight function. The parameters can be chosen in a very wide
range. The weight function can be any monotonically decreasing function (Yang &
Meng, 2001).

TLFeBOOK

Real-Time Map Building 83

Model Variation
If the excitatory and inhibitory connections in the shunting equation in Eqn. (3)

are lumped together and the auto gain control terms are removed, then a simpler
form can be obtained from Eqn. (3):

−

=

+

=

−−++−= ∑∑][][
11

σj

k

j
ijj

k

j
ijii

i xvxwIAx
dt
dx

, (9)

This is an additive equation (Grossberg, 1988). The term −

=

+

=

−−+ ∑∑][][
11

σj

k

j
ijj

k

j
iji xvxwI

represents the total inputs to the i-th neuron from the external and internal
connections. The non-linear functions [a]+, [a]− and the threshold σ are defined as
the same as earlier in this chapter, which together guarantee that the positive neural
activity can propagate to the whole workspace while the negative activity can
propagate locally in a small region only. Thus the target globally attracts the robot
in the whole workspace, while the obstacles have only local effects to achieve
clearance from obstacles. Therefore this additive model satisfies the fundamental
concepts of the proposed approach described earlier in this chapter. It is capable
of simultaneously planning robot path and building environment map in most
situations. From the definition of [a]+, [a]− and vij Eqn. (9) can be further rewritten
into a compact form as:

)(
1

j

k

j
ijii

i xdwIAx
dt
dx ∑

=

++−=
(10)

where d(xj) is defined in Eqn. (7). The stability of this additive model can also be
proven using a Lyapunov stability theory, although its neural activity does not have
any bounds. Eqn. (9) can be rewritten into Grossberg’s general form in Eqn. (7) by
variable substitutions. It is easy to prove that Eqn. (9) satisfies all the three stability
conditions of Eqn. (7) (Grossberg, 1988; Yang, 1999, Yang & Meng, 2001).
Therefore this additive neural network system is stable.

There are many important differences between the shunting model and the
additive model, although the additive model is computationally simpler. By rewriting
them into the general form in Eqn. (7), unlike the additive model in Eqn. (9), the
amplification function ai(xi) of the shunting model in Eqn. (3) is not a constant, and
the self-signal function bi(xi) is non-linear. The shunting model in Eqn. (3) has two
auto gain control terms, (B−xi) and (D+ xi), which result in that the dynamics of

TLFeBOOK

84 Yang

Eqn. (3) remain sensitive to input fluctuations (Grossberg, 1988). Such a property
is important for the real-time robot path planning when the target and obstacles are
varying. In contrast, the dynamics of the additive equation may saturate in many
situations (Grossberg, 1988). Furthermore, the activity of the shunting model is
bounded in the finite interval [−D, B], while the activity in the additive model does
not have any bounds (Grossberg, 1988; Ogmen & Gagne, 1990a,1990b; Yang &
Meng, 2000a, 2000b, 2001).

CONCLUSION
In this chapter, a novel biologically inspired neural network model is proposed

for the real-time map building and path planning with safety consideration. Several
points are worth noticing about the proposed model:
• The strength of the clearance from obstacles is adjustable. By changing

suitable model parameters, this model is capable of planning the shortest path,
or a comfortable path, or the safest path (Yang & Meng, 2000b).

• The algorithm is computationally efficient. The map is built during the robot
navigation, and the robot path is planned through the dynamic neural activity
landscape without any prior knowledge of the dynamic environment, without
explicitly searching over the free space or the collision paths, without explicitly
optimizing any cost functions and without any learning procedures.

• The model can perform properly in an arbitrarily varying environment, even
with a sudden environmental change, such as suddenly adding or removing
obstacles.

• The model is biologically plausible. The neural activity is a continuous analog
signal and has both upper and lower bounds. In addition, the continuous
activity prevents the possible oscillations related to parallel dynamics of
discrete neurons (Glasius et al., 1995; Marcus, Waugh & Westervelt, 1990).

• This model is not very sensitive to the model parameters and the connection
weight function. The parameters can be chosen in a very wide range. The
weight function can be any monotonically decreasing function.

ACKNOWLEDGMENTS
This work was supported by Natural Sciences and Engineering Research

Council (NSERC) and Materials and Manufacturing Ontario (MMO) of Canada.

TLFeBOOK

Real-Time Map Building 85

REFERENCES
Al-Sultan, K. S. & Aliyu, D. S. (1996). A new potential field-based algorithm for

path planning. J. of Intelligent and Robotic Systems, 17(3), 265-282.
Beom, H. R. & Cho, H. S. (1995). Sensor-based navigation for a mobile robot

using fuzzy logic and reinforcement learning. IEEE Trans. on Systems, Man,
and Cybernetics, 25(3), 464-477.

Chang, C. C. & Song, K. T. (1997). Environment prediction for a mobile robot in
a dynamic environment. IEEE Trans. on Robotics and Automation, 13(6),
862-872.

Gaudiano, P., Zalama, E. & Lopez Coronado, J. (1996). An unsupervised neural
network for low-level control of a mobile robot: Noise resistance, stability, and
hardware implementation. IEEE Trans. Systems, Man, and Cybernetics,
Part B, 26(3), 485-496.

Glasius, R., Komoda, A. & Gielen, S. C. A. M. (1994). Population coding in a
neural net for trajectory formation. Network: Computation in Neural
Systems, 5, 549-563.

Glasius, R., Komoda, A. & Gielen, S. C. A. M. (1995). Neural network dynamics
for path planning and obstacle avoidance. Neural Networks, 8(1), 125-133.

Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies
in reverberating neural networks. Studies in Applied Mathematics, 52, 217-
257.

Grossberg, S. (1982). Studies of Mind and Brain: Neural Principles of
Learning, Perception, Development, Cognition, and Motor Control.
Boston: Reidel Press.

Grossberg, S. (1983). Absolute stability of global pattern formation and parallel
memory storage by competitive neural networks. IEEE Trans. Systems,
Man, and Cybernetics, 13(5), 815-926.

Grossberg, S. (1988). Non-linear neural networks: Principles, mechanisms, and
architecture. Neural Networks, 1, 17-61.

Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. Journal of
Physiology London, 117, 500-544.

Ilari, J. & Torras, C. (1990). 2nd path planning: A configuration space heuristic
approach. International Journal of Robotics Research, 9(1), 75-91.

Li, L. & Ogmen, H. (1994). Visually guided motor control: Adaptive Sensorimotor
mapping with on-line visual-error correction. In: Proceedings of the World
Congress on Neural Networks. 127-134.

Li, Z. X. & Bui, T. D. (1998). Robot path planning using fluid model. Journal
of Intelligent and Robotic Systems, 21, 29-50.

TLFeBOOK

86 Yang

Lozano-Perez, T. (1983). Spatial planning: A configuration space approach.
IEEE Trans. Computers, 32, 108-320.

Marcus, C. M., Waugh, F. R. & Westervelt, R. M. (1990). Associative
memory in an analog iterated-map neural network. Physical Review A,
41(6), 3355-3364.

Ogmen, H. & Gagne, S. (1990a). Neural models for sustained and on-off units
of insect lamina. Biological Cybernetics, 63, 51-60.

Ogmen, H. & Gagne, S. (1990b). Neural network architecture for motion
perception and elementary motion detection in the fly visual system. Neural
Networks, 3, 487-505.

Ong, C. J. & Gilbert, E. G. (1998). Robot path planning with penetration
growth distance. Journal of Robotic Systems, 15(2), 57-74.

Yang, S. X. & Meng, M. (2000a). Neural network approach to real-time
collision-free motion planning. Neural Networks, 13(2), 133-148.

Yang, S. X. & Meng, M. (2000b). An efficient neural network method for real-time
motion planning with safety consideration. Robotics and Autonomous Systems,
32(2-3), 115-128.

Yang, S. X. & Meng, M. (2001). Neural network approaches to dynamic collision-
free trajectory generation. IEEE Trans. on Systems, Man, and Cybernetics,
Part B, 31 (3), 302-318.

Yang, X. (1999). Neural Network Approaches to Real-Time Motion
Planning and Control of Robotic Systems. PhD dissertation, University
of Alberta, Canada.

Zalama, E., Gaudiano, P. & Lopez Coronado, J. (1995). A real-time, unsupervised
neural network for the low-level control of a mobile robot in a non-stationary
environment. Neural Networks, 8, 103-123.

Zelinsky, A. (1994). Using path transforms to guide the search for findpath in 2nd
International Journal of Robotics Research, 13(4), 315-325.

TLFeBOOK

Real-Time Map Building 87

SECTION II:

HYBRID
EVOLUTIONARY

SYSTEMS FOR
MODELLING,

CONTROL
AND ROBOTICS
APPLICATIONS

TLFeBOOK

88 Thomas and Stonier

Chapter V

Evolutionary Learning
of Fuzzy Control
in Robot-Soccer

P.J.Thomas and R.J.Stonier
Central Queensland University, Australia

Copyright © 2003, Idea Group Inc.

ABSTRACT
In this chapter an evolutionary algorithm is developed to learn a fuzzy
knowledge base for the control of a soccer micro-robot from any configuration
belonging to a grid of initial configurations, to hit the ball along the ball to
goal line of sight. A relative coordinate system is used. Forward and reverse
mode of the robot and its physical dimensions are incorporated, as well as
special considerations to cases when in its initial configuration, the robot is
touching the ball.

INTRODUCTION
An important aspect of fuzzy logic application is the determination of a fuzzy

logic knowledge base to satisfactorily control the specified system, whether this is
derivable from an appropriate mathematical model or just from system input-output
data. Inherent in this are two main problems. The first is to obtain an adequate
knowledge base (KB) for the controller, usually obtained from expert knowledge,
and second is that of selection of key parameters defined in the method.

TLFeBOOK

Fuzzy Control in Robot-Soccer 89

The KB is typically generated by expert knowledge but a fundamental
weakness with this static acquisition is that it is frequently incomplete, and its control
strategies are conservative. To overcome this one approach is to construct self-
organising fuzzy logic controllers (Yan, 1994). These self-organising fuzzy logic
controllers are used mainly for the creation and modification of the rule base. Of
interest is the question of how this self-organisation and adaptation can be carried
out in an automated fashion. One way is to incorporate genetic/evolutionary algorithms
to form genetic fuzzy systems, (Karr, 1991; Thrift, 1991; Cordòn, 1995).

Evolutionary learning of fuzzy controllers in a three-level hierarchical, fuzzy
logic system to solve a collision-avoidance problem in a simulated two-robot
system is discussed in Mohammadian (1998a). A key issue is that of learning
knowledge in a given layer sufficient for use in higher layers. We need to find a KB
that is effective, to some acceptable measure, in controlling the robot to its target
from ‘any’ initial configuration. One way is to first learn a set of local fuzzy
controllers, each KB learned by an evolutionary algorithm from a given initial
configuration within a set of initial configurations spread uniformly over the
configuration space. These KBs can then be fused through a fuzzy amalgamation
process (Mohammadian, 1994, 1998b; Stonier, 1995a, 1995b), into the global
(final), fuzzy control knowledge base. An alternative approach (Mohammadian,
1996; Stonier, 1998), is to develop an evolutionary algorithm to learn directly the
‘final’ KB by itself over the region of initial configurations.

In this chapter we use this latter approach and incorporate special attributes
to cover the difficult cases for control when the robot is close and touching the ball.
A relative coordinate system is used and terms are introduced into the fitness
evaluations that allow both forward and reverse motion of the soccer robot. We
define the robot soccer system, the design of the fuzzy controller, the design of the
evolutionary algorithm and finish with a short presentation of results for control of
the robot from a far distance from the ball and from configurations close and
touching the ball.

ROBOT SOCCER SYSTEM
The basic robot soccer system considered is that defined for the Federation

of Robot-Soccer Association, Robot World Cup (www.fira.net). All calculations
for vision data processing, strategies and position control of the robots are
performed on a centralised host computer. Full specifications of hardware,
software and basic robot strategies that are employed in this type of micro-robot
soccer system can be found in Kim (1998).

TLFeBOOK

90 Thomas and Stonier

Kinematics
The kinematics of a wheelchair-style robot is given by Equation 1 from Jung

(1999).

1/ 2 1/ 2
1/ 1/

LC

R

vv
vL Lω

= −

(1)

where vL is the instantaneous speed at the left wheel of the robot, vR is the
instantaneous speed at the right wheel of the robot, L is the wheel base length, vC
is the instantaneous speed of the robot centre, ω is the instantaneous angular speed
about the instantaneous point of rotation (x0, y0). The radius of the arc r is
determined from vC = r ω, which is the distance between (x0, y0) and vC.

Let the next robot position be approximated by a small time interval ∆t.
Assume vL and vR are constant over this interval. If ω = 0, the robot is moving in
a straight line. Equation 2 gives the next robot position using linear displacement
∆s = vC∆t:

'

'

'

cos()
sin()

0

R R R

R R R

R R

x x s
y y s

φ
φ

φ φ

 ∆
 = + ∆

(2)

Figure 1: Curvilinear formulae symbols

x

y

0
0

(x ,y)

(x ,y)

(x ,y)’ ’
’

r

- /2

v

v

0 0

R R
R

R

R R
R

C

C

∆θ

φ

φ

φ π

TLFeBOOK

Fuzzy Control in Robot-Soccer 91

When ω ≠ 0, the robot scribes an arc. Curvilinear robot paths are calculated
using translation, rotation and translation Equation 3. Refer to Figure 1 for the
following derivation:

First, determine the point of rotation (x0, y0):

0

0

cos(/ 2) sin()
sin(/ 2) cos()

R R R R

R R R R

x x x
r r

y y y
φ π φ
φ π φ

− −
= − = + −

Translate point of rotation to origin:

1
0

1
0

sin()
cos()

R RR

R RR

xxx
r

yyy
φ
φ

= − = −

Rotate about the z-axis (counter-clockwise positive):

2 1

2 1

sin()cos() sin()
cos()sin() cos()

RR R

RR R

x x
r

y y
φ θθ θ
φ θθ θ

+ ∆ ∆ ∆
= = − + ∆− ∆ ∆

Translate origin to point of rotation:

' 2
0

' 2
0

sin() sin()
cos() cos()

R R RR R

R R RR R

x xx x
r

y yy y
φ θ φ
φ θ φ

+ ∆ −
= + = + − + ∆ +

Finish off by adding in robot angle correction:

'

'

'

sin() sin() 0
cos() cos() 0

0 0 1

R R R R

R R R R

R R

x x r
y y r

φ θ φ
φ θ φ

φ φ θ

 + ∆ −
 = + − + ∆
 ∆

(3)

TLFeBOOK

92 Thomas and Stonier

where φ'
R ∈ [0,2π) is necessarily constrained for input into the fuzzy system. The

following parameter values were used: L = 68.5(mm), ∆t = 1/60(s))(60/1 st =∆ .
The playable region was defined as a rectangle from coordinate (0,0) to (1500,1300)
(measurements in mm.), ignoring the goal box at each end of the field.

FUZZY CONTROL SYSTEM DESIGN
The discussion on kinematics above shows, excluding momentum and friction,

that only two variables, the velocity of the left and right wheels, y1 = vL and y2 =
vR, control the motion of the robot. These two variables are taken as output of the
fuzzy control system now described below. Input variables for the fuzzy control
system are taken to be the position of the robot relative to the ball, described by n
= 3 variables x1 = d2, x2 = θ and x3 = φ as shown in Figure 2.

These relative coordinates were used in preference to Cartesian coordinate
variables for a number of reasons, one being that it reduced the number of rules in
the fuzzy KB. Distance squared was used to reduce the calculation cost by not using
a square root function, effectively applying a “more or less” hedge. The angle of the
robot relative to the ball goal line was used instead of the ball robot line because of
positional error arising from image capture pixel size in determining the position of
each object. The vision system has an inherent ±4.5 mm error caused by pixel size.
The pixel size error causes the angle of the line error to be inversely proportional
to the distance between the points used to calculate the line. However, one of the
points used to calculate the BG line is at the centre of the goal line. The allowable
angle range when close to the goal offsets the error caused in determining the line.
The vision system error has negligible effect on placing the ball into the goal when
using BG as a reference.

Figure 2: Relative coordinate parameters

G(x,y)

B(x,y) R(x,y,)d
r

r2

θ
φ

φ

φ

TLFeBOOK

Fuzzy Control in Robot-Soccer 93

Figure 3 shows the fuzzy input sets used to define the “attack ball strategy.” For
all rules seven sets are defined for both angles θ and φ : VS is Very Small, S is Small,
SM is Small Medium, M is Medium, ML is Medium Large, L is Large and VL
is Very Large. Five sets are defined for distance squared: VC is Very Close, C is
Close, N is Near, F is Far and VF is Very Far.

The values of y1 and y2 are taken to be integers lying in the interval [-128, 127].
We take 256 Bk output fuzzy sets each corresponding to centre)1(128 −+−= kyk
for k = 1,…,256. In this case the name of the sets are the same as the output centres

ky of the sets.
The purpose of taking 256 Bk output fuzzy sets instead of 255, Bk ∈ [-127,

127], is a technical issue to allow the use of a binary mutation operator in the
evolutionary algorithm. The velocities are in fact capped to vL, vR ∈ [-127, 127]
before transmission to the robots.

Taking a large number of output sets serves three purposes:
(i) It does not affect the computational cost of the fuzzy controller; the solution can

be as fine as it needs to be.

Figure 3: Fuzzy input sets

0 2
0

1 VS S SM M ML L VL

(rad)
3 3 3 3

2 4 5π ππ π π π

0 2
0

1 VS S SM M ML L VL

(rad)
3 3 3 3

2 4 5π ππ π π π

µ(θ)

µ(φ)

µ

θ

φ

(a)

(b)

(c)

0 4 16 36 64 100 144 196 256 324 400
0

1

d (x10 mm)

(d)
VC,C,N F VF

2 4 2

2µ(d2)

µ(φ)

µ(θ)

TLFeBOOK

94 Thomas and Stonier

(ii) The ky are the control values used for the left and right wheel motors -
eliminating conversion.

(iii) It reduces erratic behaviour of the evolutionary algorithm (finer control) during
mutation.

There were 245577 =×× rules in a complete fuzzy knowledge base for this
system. In general, the jth fuzzy rule has the form:

If (1x is 1
jA and 2x is 2

jA and 3x is 3
jA)

Then (1y is 1
jB and 2y is 2

jB)

where Ak
j, k = 1,2,3 are normalised fuzzy sets for input variables xk, k = 1,2,3,

and where Bm
j, m = 1,2 are normalised fuzzy sets for output variables ym, m = 1,2.

Given a fuzzy rule base with M rules, a fuzzy controller as given in Equation 4
uses a singleton fuzzifier, Mamdani product inference engine and centre average
defuzzifier to determine output variables:

1 1

1 1

()

()

j
i

j
i

nM
j

k iA
j i

k nM

iA
j i

y x
y

x

µ

µ

= =

= =

=
∑ ∏

∑ ∏ (4)

where j
ky are centres of the output sets Bk

j.
These values, 490 of them, are typically unknown and require determination

in establishing valid output for controls to each wheel of the robot. Since there is
lack of a priori knowledge about the system control, we used evolutionary
algorithms (EAs) (Michalewicz, 1994) to search for an acceptable solution.

EVOLUTIONARY LEARNING
Our objective here is to learn a rule base for the control of this system. The

first problem is how to formulate the knowledge base as a string in the population.
Each output fuzzy set is represented by an integer in the interval [-128, 127].

We can form an individual string P
∼ as a string of 2 490M = consequents (integers

under the identification above):

TLFeBOOK

Fuzzy Control in Robot-Soccer 95

 s ∼ = 1
 1 { 2

 1
 1

 M
 1

 k
 2

 k s , s , s , s , … , s , … , s , } M
 2

where sj, j = 1, 2 is an integer in the interval [-128,127].
The population at generation t , P(t) = n

∼s : n = 1, …, N , where N is the
number of individuals in the population. The population at the next generation P(t
= 1) was built using a full replacement policy. Tournament selection, with nT being
the tournament size, determined two parent strings for mating in the current
generation. Geometric crossover with probability pc was used for generating two
child strings from the parent strings, for insertion in the next generation’s population.
In each string, the integer components were stored as two’s complement byte-sized
quantities, and binary mutation was undertaken on each string in the new population
with probability pm. (Elitism was not used, for it was found to cause premature
convergence of the algorithm.)

Fitness evaluation of each individual was calculated by scribing a path using the
fuzzy controller and stopping when either:
(i) iteration (time steps) reached a prescribed limit (100), or
(ii) the path exceeded the maximum allowable distance from the ball, or
(iii) the robot collides with the ball.

In (iii) care needs to be taken recognising the finite size of the robot. The robot
is a square with size of 80 mm and the ball has a diameter of 42.7 mm. Detecting
a collision of the robot and ball is made by calculating the distance of the ball centre
(xB, yB) = (750, 650) perpendicular to the line in the direction of the robot dNL
passing through the centre of the updated position of the robot (x'

R, y'
R), and the

distance of the ball dAL projected onto that line. These values are determined as:

1

|)()(|
1

|)()(|

2

''

2

''

+

−−−
=

+

−+−
=

m
xxmyyd

m
yymxxd

RBRB
NL

RBRB
AL

where m is the gradient of the line passing through the robot centre, in the direction
of the robot. The following quantity is used to define an exclusion region determined
by the physical size of the robot:

A flag “HitBall” is raised when the following condition is true:

TLFeBOOK

96 Thomas and Stonier

IF (((40<NLd) AND (35.61<ALd)) OR ((35.61<NLd)

AND (40<ALd)) OR (22 35.61<cornerr)) THEN (HitBall = TRUE)

where, r2
corner = (dAL − 40)2 +(dNL − 40)2.

The final position of the path was used to evaluate the fitness of each individual
as given by Equation 5:

1 2 3 4()
C

T T T T+ + +∑ (5)

The fitness is calculated as a sum of a number of different quantities, over a set
C of initial starting configurations, each configuration specifying robot coordinates
xR, yR , and angle φ describing the orientation of the robot relative to the BG line.

There were 273 initial configurations. The first 28 are defined with the robot
touching the ball on each of its four sides in seven different orientations θ around
the ball. The remaining initial configurations were defined with seven θ angles on five
distance rings from the ball with seven φ angles.

The first 28 configurations c ∈ [0, 28), are given by:

)cos(35.61 θ+= BR xx ,)sin(35.61 θ+= BR yy , and φ with:

}36/71,3/5,3/4,,3/2,3/,0{ ππππππθ ∈ , and }2/3,,2/,0{ πππφ ∈ .

The remaining initial configurations c ∈ [28, 273), are given by:

)cos(θdxx BR += ,)sin(θdyy BR += , and φ with:

}1900,94.784,4.310,75.122,92.77{∈d ,
}36/71,3/5,3/4,,3/2,3/,0{ ππππππθ ∈ ,
}36/71,3/5,3/4,,3/2,3/,0{ ππππππφ ∈ .

The first quantity in the fitness sum is T1 = d2(R, DP). It is the final squared
distance between the robot centre R and the destination point DP = (688.5, 650)
when the path is terminated as described above. The term is used to determine
accuracy of the fuzzy controller to control the system to the desired destination
configuration.

TLFeBOOK

Fuzzy Control in Robot-Soccer 97

The second term T2 is the iteration count for each path. This quantity is used
to minimise the time taken to reach the desired destination configuration.

The third quantity is T3 = 1000 sin 2 (φ) where φ is the final angle of the robot
relative to line BG . This term is included to enable forward facing and reverse facing
solutions to be accepted at the final destination.

The fourth quantity T4 is a penalty function that is only applied for those
configurations c ∈ [0, 28). It is described in Equation 6:

[)
[)

2

4

10000 11 /12,13 /12 sin () 0.25
10000 11 /12,13 /12
0

if and
T if

otherwise

θ π π φ
θ π π

 ∈ >
= ∉

(6)

It is a constant penalty used to drive the solution away from paths that hit the
ball when considering the first 28 initial configurations. Without this penalty, the best
solutions obtained via evolutionary learning are invariably ones that try to run
through the ball.

The evolutionary algorithm was terminated after a prescribed number of
generations. The best individual, that is, the one with the minimum fitness, is taken
as the “best” fuzzy logic controller determined by the algorithm for this problem.

RESULTS
The evolutionary algorithm was found to easily learn a fuzzy controller for when

fitness was evaluated for a single initial configuration.
Establishing learning over a set of initial configurations from c = 0 to c = 28

where the robot was placed in contact with the ball was difficult; appropriate sets
of evolutionary parameters needed to be defined with a mutation schedule to ensure
diversity in the population at different stages in the learning, for example after every
1,000 generations. The reason for the difficulty was that the algorithm tended to
lock fuzzy control into always forward or always reverse motion of the robot, with
the consequence that not the shortest distance path was achieved, and invariable
penalty constraints were broken.

Learning the fuzzy control over the set of all configurations incorporated the
difficulties that had to be overcome for those configurations close to the ball. The
algorithm tended to lock into local minima when considering multiple configurations.
The local minima existed due to the algorithm finding a good single path amongst the
many that influenced nearby paths.

TLFeBOOK

98 Thomas and Stonier

Figure 4: Long distance paths

B(750,650), G(1500,650), c175(1534.94,650,0), DP(688.65,650), iteration=53
(a)

B(750,650), G(1500,650), c199(-34.94,650,), DP(688.65,650), iteration=31
(b)

π

Typical values in simulations were: the size of the population N = 200,
probability of crossover pc = 0.6 and the number of tournament contestants nT =
8. Mutation probability was defined as a schedule: pm = 0.05 − 0.00048(gen mod
(1000)), which decreased mutation with increasing generation number and
recommenced with high mutation every 1,000 generations. The evolutionary
algorithm was usually run for batches of 10,000 generations.

Due to limited space we present here a few results obtained from the
evolutionary learning of the knowledge base, two examples showing the control of
the robot from a large distance from the ball, and two showing control of the robot
touching the ball.

Learning of the Fuzzy Control at a Distance
Figure 4(a) shows the path from initial configuration c = 175. For this initial

configuration the robot is placed to the far right of the ball and on the ball to goal
line. It took 53 time steps to reach the destination point DP with a final angle of
φ (rad).

In Figure 4(b) the path from initial configuration c = 199, with the robot to the
far left, facing away from the ball on the ball to goal line, took just 31 time steps to
reach the destination point DP with a final angle of φ (rad). Note that in both
cases the robot approached the destination in reverse mode.

These graphs are typical of the fuzzy control of the robot starting from initial
positions at a “large” distance from the ball. Destination and final angle accuracy
was excellent. Evolutionary learning was quite rapid, with acceptable solutions
resulting in smooth paths to the destination started appearing within a few hundred
generations. Further learning resulted in faster control to the destination.

TLFeBOOK

Fuzzy Control in Robot-Soccer 99

Learning of Fuzzy Control Close to the Ball
Learning of the fuzzy control of the robot close to the ball was more difficult.

Figure 5(a) shows the path from initial configuration c = 1 which took 19 time steps
to reach the destination point DP with final angle of 0 (rad). In Figure 5(b) the
path from the initial configuration c = 13 took 24 time steps to reach the destination
point DP with a final angle of 0 (rad). In both cases the robot approached the
final destination in forward mode.

The starting initial configurations in which the robot was touching the ball were
the most difficult to learn, for they were responsible for the majority of the penalty
function evaluations in the fitness calculations for each individual of the evolutionary
algorithm. The hardest initial configuration to learn was c = 13.

COMMENTS
This chapter detailed the learning of a fuzzy logic controller to control a soccer

robot to a point behind the ball in the direction of the goal by using an evolutionary
algorithm. Learning of a single robot path was very easy. However, learning of
several paths form different initial configurations caused many difficulties.

Several starting configuration evaluations caused the final approach of all paths
to be either forward or reverse facing. To achieve the final approach heading, the
evolutionary algorithm learnt to use chatter and high momentum turns. If a restriction
on turning was applied, the algorithm learnt to execute low momentum turns.

The cause of these difficulties was identified as:
(i) Insufficient number of inputs to the fuzzy system, the rule base could not cater

for all of the information need to control the robot to forward and reverse facing
solutions.

(ii) Multi-criteria optimisation problems caused by summing all terms from all path
evaluations forming the fitness value.

Figure 5: Short distance paths

c001(811.35,650, /2),
iteration=19

(a)
B(750,650), G(1500,650), DP(688.65,650)

c013(688.65,650, /2),
iteration=24

(b)

π π

TLFeBOOK

100 Thomas and Stonier

NEW RESEARCH
The research presented here has since been extended and a brief description

is given. The full analysis and results will be published elsewhere.
The number of input variables for the given problem was extended to include

left wheel and right wheel velocities, with the number of membership sets for each
variable extended to 7, yielding 75 = 16807 rules in the complete fuzzy knowledge
base.

The output variables were changed from left and right wheel velocities to
changes in these velocities, namely: ∆vL and ∆vR, with final wheel velocities v'

L =
vL + ∆vL and v'

R = vR + ∆vR. The number of output member sets was reduced to
eight Bk ∈ [-28, 28], k = 0, ..., 7.

The number of initial configuration was increased to a grid: x = −750 + 100(k
− 1) for k = 1, ..., 31 and y = −650 + 100(k − 1) for k = 1, ..., 27 excluding the
ball position. Each grid point has five angles: 2(1) / 5kθ π= − for k = 1,…,5. The
total number of initial configurations is therefore C = 5(31 × 27 − 1) = 4180. All
initial configurations start with zero, left and right, wheel velocity.

Each output fuzzy set is represented by an integer in the interval [0, 7]. An
individual string P

∼ is now of length 2 33614M = consequents:
 s ∼ = 1

 1 { 2
 1

 1
 M
 1

 k
 2

 k s , s , s , s , … , s , … , s , } M
 2 where js , 2,1=j is an integer in the

interval [0, 7].
Evolutionary learning was again used with a population of size N = 2000, full

replacement policy, tournament selection with size nT = 3 and one point crossover
with probability pc = 0.6. Elitism was now used, with the 10 best individuals carried
from the old population to the new population. An incremental mutation operator
with probability pm = 0.01 replaced the binary mutation used previously. This
mutation operator increments/decrements sk by one with equal probability and has
boundary checking, that is, if sk = 0, it was incremented to sk = 1, and if sk = 7, it
was decremented to sk = 6.

The final position of the path was again used to evaluate the fitness of each
individual as given by Equation 7:

1 1 2 2 3 3 4 4()
C

T T T Tα α α α+ + +∑ (7)

where α1 = 1.0, α2 = 1.0, α3 = 100.0, α4 = 0.0. The weight coefficients for the
first two terms were equal, the terminal angle coefficients was heavily weighted and
constant penalty was turned off.

TLFeBOOK

Fuzzy Control in Robot-Soccer 101

A new learning for the algorithm was implemented as follows. The evolutionary
algorithm was run sequentially through the full number of initial configurations, being
allowed to run for 10 generations at each configuration before moving to the next.
It was stopped after a total of 500,000 generations in all were completed.

The results obtained in the final “best” fuzzy knowledge were excellent,
obtaining very smooth continuous paths to the target with both forward and reverse
facing in the final position depending on the initial configuration. Only a very small
number of aberrations existed, but the paths to the target were still acceptable. Due

Figure 6: Long distant path

Figure 7: Short distant path

B(750,650), G(1500,650), c2342(950,350,4 /5),
DP(688.65,650), iteration=47

π
B(750, 650), G(1500, 650), c2342(950, 350, 4π/5),

DP(688.65, 650), iteration = = = = = 47

B(750,650), G(1500,650), c0072(-750,750,4 /5),
DP(688.65,650), iteration=72

πB(750, 650), G(1500, 650), c0072(-750, 750, 4π/5),
DP(688.65, 650), iteration = = = = = 72

TLFeBOOK

102 Thomas and Stonier

to limited reporting space, we show only two of the many images obtained in Figures
6 and 7. Note one has final approach to the ball forward facing, the other reverse
facing; one is from a far distance and one is close to the ball.

This research is being further extended for initial input left and right wheel
velocities lying in the full range of admissible values.

REFERENCES
Cordòn, O. & Herrera, F. (1995). A general study on genetic fuzzy systems. In

Winter, G & Cuesta, P. (Eds.), Genetic Algorithms in Engineering and
Computer Science, John Wiley and Sons, 33-57.

Jung, M.-J., Shim, H.-S., Kim, H.-S. & Kim, J.-H. (1999). The omni-directional
mobile robot OmniKity-Y(OK-I) for RoboSOT category. In Stonier, R.J. &
Kim, J.H. (Eds) Proceedings of the FIRA Robot World Cup 1998, 37-42.

Karr, C.L. (1991). Applying genetics. AI Expert, 38-43.
Kim, J.H. (1998). Lecture Notes on Multi-Robot Cooperative System

Development. Green Publishing Co.
Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution

Programs (2nd Edition). New York: Springer Verlag.
Mohammadian, M. (1998). Genetic learning of fuzzy control rules in hierarchical

and multi-layer fuzzy logic systems with application to mobile robots,
PhD Thesis, Central Queensland University, Rockhampton, Australia.

Mohammadian, M. & Stonier, R.J. (1994). Generating fuzzy rules by genetic
algorithms. Proceedings of 3rd International Workshop of Robot and
Human Communication, Nagoya, Japan, 362-367.

Mohammadian, M. & Stonier, R.J. (1996). Fuzzy rule generation by genetic
learning for target tracking. Proceedings of the 5th International Intelligent
Systems Conference, Reno, Nevada, 10-14.

Mohammadian, M. & Stonier, R.J. (1998). Hierarchical fuzzy control, Proceedings
of the 7th International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems, Paris, 621-
629.

Stonier, R.J. (1995). Adaptive learning using genetic algorithms and evolutionary
programming in robotic systems, First Korea-Australia Joint Workshop on
Evolutionary Computing, 183-198.

Stonier, R.J. & Mohammadian, M. (1995). Self learning hierarchical fuzzy logic
controller in multi-robot systems. Proceedings of the IEA Conference
Control95, Melbourne, Australia, 381-386.

TLFeBOOK

Fuzzy Control in Robot-Soccer 103

Stonier, R.J. & Mohammadian, M. (1998). Knowledge acquisition for target
capture, Proceedings of the International Conference on Evolutionary
Computing ICEC’98, Anchorage, Alaska, 721-726.

Thrift, P. (1991). Fuzzy logic synthesis with genetic algorithms. Proceedings of the
4th International Conference on Genetic Algorithms, 509-513.

Yan, J., Ryan, M. & Power, J. (1994). Using Fuzzy Logic, New York: Prentice
Hall.

TLFeBOOK

104 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

Chapter VI

Evolutionary Learning of a
Box-Pushing Controller

Pieter Spronck, Ida Sprinkhuizen-Kuyper, Eric Postma and Rens Kortmann
Universiteit Maastricht, The Netherlands

Copyright © 2003, Idea Group Inc.

Abstract
In our research we use evolutionary algorithms to evolve robot controllers for
executing elementary behaviours. This chapter focuses on the behaviour of
pushing a box between two walls. The main research question addressed in
this chapter is: how can a neural network learn to control the box-pushing
task using evolutionary-computation techniques? In answering this question
we study the following three characteristics by means of simulation
experiments: (1) the fitness function, (2) the neural network topology and (3)
the parameters of the evolutionary algorithm. We find that appropriate
choices for these characteristics are: (1) a global external fitness function, (2)
a recurrent neural network, and (3) a regular evolutionary algorithm
augmented with the doping technique in which the initial population is
supplied with a solution to a hard task instance. We conclude by stating that
our findings on the relatively simple box-pushing behaviour form a good
starting point for the evolutionary learning of more complex behaviours.

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 105

Introduction
Imagine a cat on a rooftop. It has just spotted a juicy pigeon sitting on a window

sill and is wondering how to catch this prey. The situation is tricky: there are two
routes the cat can take, both of them involving walking on narrow ledges and
requiring daring tricks of balance. The cat decides to take the shortest route and tries
to lower itself onto a ledge beneath. While trying to do so, it notices that the chance
of toppling over and falling three stories down onto a busy shopping street is
becoming increasingly more realistic. The cat now decides to abandon its plan and
sets its senses to something more practical.

From a traditional Artificial Intelligence point of view, this navigation problem
is not that difficult. The start and goal positions are known, the possible routes are
clear, and apparently, the cat has developed a plan to catch the bird. However, the
successful execution of the plan critically depends on the cat’s low-level interactions
with its environment, rather than its high-level planning capabilities. Hitherto, the
Artificial Intelligence community has given little attention to low-level control
mechanisms (e.g., equilibrium controllers) as compared to high-level controllers
(e.g., symbolic problem-solving systems).

Low-level controllers are typically needed for autonomous systems dealing
with elementary tasks in dynamic partially observable environments. They form the
foundation of high-level controllers executing more complex tasks in the environment
(Brooks, 1986). In this chapter we focus on the elementary task of pushing a box
between two walls. The box-pushing task was originally introduced (albeit in a
slightly different form) by Lee, Hallam and Lund (1997). Pushing an object is an
important aspect of robot soccer, a modern platform for autonomous systems
research (Asada & Kitano, 1999), and underlies many more complex behaviours
such as target following, navigation and object manipulation. While the deceptively
simple task of pushing an object is usually disregarded in favour of the seemingly
more challenging task of determining a strategic position, pushing is far from trivial
and deserves at least as much attention as the strategic task.

The main research question addressed in this chapter is: how can a neural
network learn to control the box-pushing task using evolutionary-computation
techniques? In answering this question we study the following three characteristics
by means of simulation experiments: (1) the fitness function, (2) the neural network
topology and (3) the parameters of the evolutionary algorithm.

The outline of the remainder of this chapter is as follows. First, we discuss some
background on the use of neural networks and evolutionary algorithms in learning
to control a robot. Then we describe the goal of the research in terms of the three
characteristics discussed above (i.e., the fitness function, the neural-network

TLFeBOOK

106 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

topology and the parameters of the evolutionary algorithm). We give an overview
of the standard procedure used in our simulation experiments, followed by a
presentation and discussion of the results. Finally, we draw conclusions.

Background
This section provides some background on the approach pursued in our

experiments by discussing the use of neural and evolutionary computation techniques
in controlling an autonomous robot.

Neural networks offer useful models for learning to control autonomous
robots. Although there exist many effective learning algorithms for automatically
setting the weights of the network, most algorithms require a carefully prepared set
of training examples consisting of pairs of input and desired-output patterns. For
freely moving robots in a semi-realistic environment, the preparation of a training set
is rather tedious. It is not uncommon that a set of training examples cannot be
generated at all. For instance, if the environment in which the controller has to work
is (partially) unknown, a training set cannot take into account all the situations that
the controller may encounter.

An alternative way to determine the neural network weights is by employing
evolutionary algorithms (Bäck, 1996; Yao, 1995). Evolutionary algorithms have
many advantages over regular training methods especially for controlling robots
(Arkin, 1998). Besides the fact that evolutionary algorithms offer the ability to learn
both the weight values and the topology (whereas regular training methods often are
limited to determining only the weight values), the only requirement for evolutionary
algorithms to work is the availability of a so-called fitness function. A fitness function
is an evaluation function indicating the relative success of one solution compared
to all the others. Such a fitness function can be defined on a set of examples,
comparable to the training set used in most regular training methods. Alternatively,
the fitness function can be defined as the quality of the actual behaviour of a neural-
network-controlled robot during a test run. This last form of evolutionary learning
is called Genetic Reinforcement Learning and was relatively unknown until
Darrell Whitley (1993) introduced it in his experiments with the GENITOR
algorithm.

The main disadvantage of evolutionary algorithms is their inherent unpredictability
with respect to the computation time and the quality of the final solution found. It is
very hard to predict the time before the algorithm comes up with a satisfactory
solution to the problem at hand, and it is often difficult to judge whether significantly
better solutions are possible (Goldberg, 1989). In view of these limitations, we

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 107

decided to study the application of evolutionary algorithms to a relatively simple
box-pushing task extensively in order to find an optimal configuration for the neural
controller and the evolutionary algorithm.

Goal
The goal of our study is to find an optimal design of the evolutionary

experiments in order to optimise the quality of a box-pushing controller. In
particular, our aim is to increase our understanding of how to set up the experiments
in an optimal way so that we can be more effective in designing neural controllers
for more complex tasks.

In the box-pushing task, the robot is faced with the task of pushing a box as
far as possible between two walls in a limited period of time. The inputs of the neural
network are the signals received by the robot’s proximity sensors. The output of
the network rotates the wheels of the robot.

As exemplified in our research question, the following three questions of the
experimental set-up are addressed in our research.
1. What is a suitable fitness function for the evolutionary algorithm? The

fitness function is a measurement of the success of a solution proposed by the
evolutionary algorithm, and is the single most important aspect of any
evolutionary system.

2. What is an appropriate neural network topology to solve the box-pushing
task? The main candidates for the neural network are the feedforward and
recurrent network topologies. The main advantage of a feedforward network
is that it is quick and simple to evolve. The main advantage of a recurrent
network is that it has the ability to store and recall values from previous cycles
of the robot run.

3. What is a proper choice for the parameters of the evolutionary algorithm?

In the next section, we discuss the experimental procedure followed in
answering these questions.

Experimental Procedure
The Robot

The robot we used in our studies is of the Khepera type (Mondada et al.,
1993). For this robot a good simulation is publicly available. Controllers developed
with this simulation have shown to work well in practice. We used the simulator on

TLFeBOOK

108 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

0

1
2 3

4

5

6 7

Neural controller inputs:

0 to 7: Sensor 0 to 7 distance values.
8: Sensor 0 - 1
9: Sensor 1 - 2
10: Sensor 2 - 3
11: Sensor 3 - 4
12: Sensor 4 - 5
13: Sensor 6 - 7

Inputs 8 to 13 are the edge detectors.

Figure 2: Overview of the Khepera robot

its original Unix-platform (Figure 1) and also ported it to a Windows-based
environment called “Elegance” (Spronck & Kerckhoffs, 1997), that is particularly
suited to experiment with different configurations for the evolutionary algorithm.

The Khepera robot possesses eight infra-red light and proximity sensors
(Figure 2). In our experiments, we disregarded the light sensors and only used the
proximity values (except for the experiments for determining a suitable fitness
function). The sensors are numbered clockwise from 0 to 7 starting from the left of
the robot. Sensors 2 and 3 point forward, while sensors 6 and 7 point backwards.
To control the robot, the two wheels of the robot are supplied with input values

Figure 1: Screenshot from the Unix Khepera simulator. To the left the robot
world, with the walls (rectangular blocks), the robot (grey circle) and the box
(black circle). The small black spots indicate the starting positions used for the
robot (the lower three spots) and the box (the upper three spots).

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 109

ranging from –10 to +10 in integer numbers, where the sign of the input value
determines the direction of rotation of the wheels. The robot moves in discrete steps
and requires new inputs at each step.

As can be seen from Figure 1, the robot is placed within a short distance from
the box, close to the back wall. In order to move the box as far as possible from
its initial position, the only viable pushing direction is towards the top of the area.
The two walls are rough. The robot may use a wall as support while pushing the box,
but then has to deal with the roughness that may cause the box to get stuck.

The Controller
The neural controller we use has 14 inputs. Eight inputs are delivered by the

proximity sensors. The other six are defined as the differences between the values
of neighbouring proximity sensors (leaving out the differences between sensors 5
and 6 and between sensors 0 and 7, because these pairs are too widely separated).
We call these (virtual) sensors “edge detectors,” because they deliver large inputs
when an edge (i.e., a spatial discontinuity in proximity values) is detected. In a
mathematical sense, the virtual sensors are redundant. However, in our earlier

 0

1

2

3

4

5

6

7

0-1

1-2

2-3

3-4

4-5

6-7

Neural
network

Left
motor

5

4

3

2

1

0

7

6

5-4

4-3

3-2

2-1

1-0

7-6

Neural
network

Right
motor

Figure 3: Exploiting the mirror symmetry of the robot to derive a neural
controller for one wheel from the neural controller for the other wheel. The
left network drives the left motor, the right network the right motor. The
network inputs are proximity values derived from the Khepera robot shown
in Figure 2. The neural networks are equal, but the inputs have been moved
around and the signs of the edge-detecting inputs have been switched.

TLFeBOOK

110 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

studies we found them to be beneficial to the evolution process (Sprinkhuizen-
Kuyper, 2001). The use of edge-detecting inputs is inspired by biological visual
systems which are more sensitive to differences than to the absolute level of light
intensity. For instance, in the human visual system, edge-detecting neurons are
omni-present (Cornsweet, 1970). Detecting edges is an important prerequisite for
visual-guided behaviour, and allows the controller to distinguish the box from the
walls.

Since the robot has two wheels, either a neural network with two outputs is
needed, or two separate neural networks are needed. Because of the symmetric
placement of the sensors around the robot (see Figure 2), a mirrored copy of a
neural network that drives one of the wheels can be used to drive the other wheel.
The mirrored copy of the network requires exchanged inputs for the proximity and
virtual sensors. In addition, the signals delivered by the virtual edge-detecting
sensors have to be negated (see Figure 3). The use of two (almost) identical
networks reduces the number of free parameters considerably which makes the
search for a solution easier. The output of the neural networks is mapped onto a legal
interval for the motor values by using a sigmoid transfer function.

The neural activation functions employed in our neural controller are defined
as linear functions. Although the use of linear transfer functions in a multi-layer
network does not make much sense from a mathematical viewpoint (a multi-layer
network of linear layers can always be reduced to a single linear-layer network),
preliminary results revealed only small differences in performance with the (traditional)
non-linear transfer functions (Sprinkhuizen-Kuyper, 2001). It turns out that the
extra layer may help the evolution process by keeping the connection weights
relatively small.

The Evolutionary Algorithm
The evolutionary algorithm used in our experiments works on a population of

about 100 individuals. Tournament selection with size 3 is used to get parents for
the genetic operators. Newly generated individuals are inserted back in the original
population, using a crowding scheme with a factor of 3. We used elitism to prevent
loss of the best solutions, and the evolution process continues until no significant
increase in fitness is visible any more. Usually this takes 25 to 35 generations.

The chromosome representing a neural network consists of an array of
“connection genes.” Each connection gene represents a single possible connection
of the network and is defined as a pair of one bit and one real number. The bit
represents the presence or absence of a connection and the real value specifies the
weight of the connection. During absence, the weight value is maintained in the
chromosome which facilitates the evolution process by functioning as a “memory”
for removed weight values.

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 111

Selection of Task Instances
For many tasks, the detailed characteristics of the environment are unknown

in advance. The evolution of a controller for such a task needs to take the unknown
environment into account. By randomly generating task instances (environments)
for each controller to be tested, it is ensured that most situations are tested at some
point. However, with randomly generated instances evolutionary selection tends to
favour lucky controllers over good controllers. Therefore, a better approach is to
pre-select a number of specific task instances for the controller to work on, and to
define the fitness as a function on the results achieved on those task instances (e.g.,
the mean fitness). Of course, care should be taken that these task instances form
a good sample from the distribution of all instances (i.e., they cover all relevant
aspects of the task as a whole).

Based on these considerations we determine the fitness on a pre-selected
number of relevant task instances. For our experiments, we use nine different
starting positions for the robot and the box as input for the fitness determination (see
Figure 4). Defining the origin as the upper left corner (in the world as shown in Figure
1), the x and y coordinates range from 0 to 1000. The three coordinates of the
starting positions of the robot are defined as (470,900), (500,900) and (540,900)
and those of the box are (480,800), (500,800) and (545,800). Combining starting
positions of the robot and box yields nine distinct starting positions. The robot is
allowed to push the box as far as possible for 100 time steps. To average out the
noise inherent in the simulator, we calculated the fitness by taking the mean of 100
trials for each of the nine starting positions.

Experiments
The experiments performed on the box-pushing task focus on the three

questions stated previously, i.e., (1) What is a suitable fitness function for the
evolutionary algorithm? (2) What is the best neural network topology to solve the

Figure 4: The nine different starting positions used in the experiments. The
lines and ending positions illustrate typical box-pushing behaviour.

0 1 2 3 4 5 6 7 8

TLFeBOOK

112 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

box-pushing task? (3) What is the best choice for the parameters of the evolutionary
algorithm? Below, we discuss the experiments and their results for each of these
questions.

The Fitness Function
The fitness of an individual solution can be assessed from different viewpoints.

For the first series of experiments, we varied the fitness measure along two
dimensions:
• Global vs. local. A global fitness measure assesses an individual based on the

difference between begin and end state of both the individual and its environment.
A local fitness measure, instead, follows the behaviour of the individual at every
time step in the simulation.

• Internal vs. external. The internal fitness takes the agent’s perspective, i.e.,
it only uses information delivered by the sensors of the robot. In contrast, an
external fitness measure takes a “bird’s eye” perspective, i.e., it measures the
positions of the robot and the box in environmental coordinates.

Combining the global versus local and the internal versus external dimensions,
we arrive at the following four different combinations for defining the fitness function:
1. Global external (GE). The fitness is defined as the distance between the

starting and end position of the box minus half the distance between the robot
and the box at the end position.

2. Local external (LE). The local fitness (determined at each time step) is
defined as the sum of the distance change of the box minus half the change in
distance between the robot and the box. The overall local external fitness value
is defined as the sum of the local fitness values at each time step.

3. Global internal (GI). To allow the robot to derive a fitness measure, it needs
some landmark. We added a collection of lights at the end of the desired
pushing route. The light intensity sensed by the robot is inversely proportional
to the distance to the goal. At the end of the run, the fitness is calculated as the
sum of two normalised sums: the values delivered by the two frontal distance
sensors (a high value means an object is close, so if the front sensors have a
high value, the robot is pushing against something) and the values delivered by
the four front light sensors.

4. Local internal (LI). For the local internal fitness function, we employ a
variation of the function used by Lee et al. (1997). At each time step a local
result is calculated by adding the normalised sum of the two frontal distance
sensors to half the normalised average of the motor values minus one-third of
the normalised rotation component of the motor values. As a result, pushing

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 113

against something and forward motion add to the fitness, whereas turning
behaviour is costly in terms of fitness.

We tested the four fitness functions on a feedforward neural controller without
hidden nodes. We used a straightforward configuration for the evolutionary
algorithm, using only a uniform crossover and a simple mutation operator, without
the option of changing the architecture by removing connections. We generated
controllers with each of the fitness functions, and then cross-compared the resulting
controllers with the other fitness functions. The cross-comparison results of the best
controllers are given in Table 1. We found that controllers evolved from the global
external viewpoint, evaluated with the other fitness functions, performed significantly
better than the controllers evolved with those other fitness functions. This is a
fortunate result since evolution runs using the global external viewpoint required the
least number of computations, and the global external fitness measure is easily
implemented.

The other fitness measures also did quite well in cross-comparison (though
they did not yield better results than achieved with the global external measure),
except for the local internal fitness measure (see Table 1). The local internal fitness
measure was copied from Lee et al. (1997), and works well in the absence of walls,
but is of limited use for our experimental set-up: pushing full-speed against a wall
results in an undesirable high evaluation score with this fitness measure.

The success of the global external fitness measure is not a surprising result. An
external fitness measure can use more objective information than an internal fitness
measure and is therefore often more reliable and easier to implement (for instance,
in our box-pushing experiments for the internal fitness functions, we needed to add
an extra landmark to the world). As far as local fitness measures are concerned,
having established the “best strategy” to deal with a task, the fitness of a controller
can be determined at each of the constituent steps. However, in practice the best
strategy is not knownif it were, it could be programmed directly and learning would
not be necessary. Using a global fitness measure which judges fitness by the

C ross-com parison E vo lved
con tro ller G E LE G I LI

G E 286 .7 346 .6 1 .75 132 .7
LE 278 .8 341 .0 1 .70 132 .3
G I 245 .3 304 .4 1 .61 125 .2
LI 168 .3 238 .9 1 .34 139 .5

Table 1: Cross-comparison of the best controller evolved with each of the four
fitness functions tested with each of the four fitness functions. Underlined:
comparison with the same measure as evolved with. Bold: best score.

TLFeBOOK

114 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

h0

h4

o0

i13

i0 h0

h3

o0

i13

i0

Figure 5: Illustration of a feedforward network (left) and a recurrent network
(right) as used in the experiments. The hidden nodes in the feedforward
network are ordered. Connections between hidden nodes in this network are
restricted in the sense that “lower” nodes are only allowed to connect to
“higher” nodes. Recurrent connections are represented by dotted arrows.

performance of a controller on the task as a whole leaves the derivation of the
strategy to the learning algorithm, instead of making possibly incorrect presumptions
about it when implementing a local fitness measure.

We therefore conclude that a global external fitness measure is best suitable
for evolving box-pushing behaviour between two walls from scratch, not only from
an experimental but also from a theoretical viewpoint. For the remainder of our
experiments, we used the global external fitness measure.

Neural Controller Configuration
To determine the best neural controller topology, we compared two neural

networks:
• A feedforward network with five hidden nodes (Figure 5, left). This

feedforward network is the most general feedforward configuration (with five
hidden nodes) possible. It is more general than the more common layered
feedforward network, since every connection is allowed as long as a
feedforward flow of data through the network is possible. For that purpose,
the hidden nodes in the network are ordered and connections between hidden
nodes are restricted to run from “lower” nodes towards “higher” nodes. Also,
the input nodes may be directly connected to the output nodes.

• A layered recurrent network with four hidden nodes (Figure 5, right). This
network is less general than a completely recurrent network, because only

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 115

recurrent connections within a layer are allowed. This was done to ease the
implementation of recurrent inputs. The recurrent connections are used to input
the node values from the previous cycle through the network into the new
cycle. As such, they function as a memory for previous node values. The
number of connections in the recurrent network with four hidden nodes is
slightly higher than in the feedforward network with five hidden nodes.

We used the same evolutionary algorithm to develop these neural controllers
as we did in the previous experiment. To increase the evolution speed, only the
fitness results of the candidates for the best individual were averaged over 100 trials.
The fitness values of the other individuals were obtained by averaging over 10 trials.
Subsequently, we experimented with different genetic operators. These experiments
did not yield results that differed significantly from those reported below. However,
since the new genetic operators added the ability to vary the size of the hidden layer,
these experiments did reveal that for our problem a hidden layer consisting of three
nodes yields optimal results.

As can be concluded from Figure 6, the experiments showed that recurrent
controllers tend to perform better (have a higher fitness) and more reliable (have a
lower standard deviation) than feedforward controllers. We also discovered the

Fitness

0

100

200

300

400

0 1 2 3 4 5 6 7 8 All

Standard deviation

0

25

50

75

100

0 1 2 3 4 5 6 7 8 All

Figure 6: Mean values of the results of the best feedforward (grey bars) and
recurrent (black bars) controllers, averaged over 7 evolution runs. The left
chart gives the fitness values, the right chart the standard deviation. On the
horizontal axis the different starting positions are presented, with the mean
values over all starting position presented as “all.” The overall values are as
follows: for the feedforward controller, the fitness is 282.9 with a standard
deviation of 90.2; for the recurrent controller, the fitness is 311.2 with a
standard deviation of 49.6.

TLFeBOOK

116 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

probable reason for that. When observing how the wheels of a feedforward
controlled robot move, we noticed that they almost exclusively take on one the two
extreme control values: –10 and +10, which initiate the behaviours “very fast
backwards” and “very fast forwards.” This behaviour works well when pushing the
box without hindrance, but makes it difficult for the robot to manoeuvre itself out
of a problematic position. This causes the robot controlled by a feedforward
network to get stuck regularly. A recurrent controller, on the other hand, shows
more subtle behaviour, and even though it sporadically gets stuck, it does so less
often than the feedforward controller. This explains both the higher fitness and the
lower standard deviation of recurrent controllers.

Some parallels can be drawn between global characteristics of our successful
controller and those of the biological visual systems. The processing of information
in visual systems is mainly bi-directional. At the level of neural networks, reciprocal
connections are the rule rather than the exception (Shepherd, 1990). Even at the
level of brain systems, the communication among systems is bi-directional. In
agreement with these biological characteristics, our most successful controllers are
recurrent controllers with linear feedback. In biological systems, linear feedback is
characteristic of temporal filters, short-term memory and noise suppression
mechanisms.

The Evolutionary Algorithm
Our third series of experiments aims at enhancing the evolutionary algorithm

in order to significantly increase the final fitness values reached.
We previously sketched the basic evolutionary algorithm. The algorithm

employs the following six genetic operators, one of which was randomly selected
at each evolution step:
1. Uniform crossover
2. Biased weight mutation (Montana & Davis, 1989) with a probability of 10%

to change each weight, in a range of [–0.3,+0.3]
3. Biased nodes mutation (Montana & Davis, 1989), changing just one node

within the same range as the biased weight mutation
4. Nodes crossover (Montana & Davis, 1989) picking half the nodes of each

parent
5. Node existence mutation (Spronck & Kerckhoffs, 1997), with a probability

of 95% to remove a node and a probability of 5% to completely activate a node
6. Connectivity mutation (Spronck & Kerckhoffs, 1997), with each connection

having a 10% probability to flip.

For the crossover operators, the best of the children was added to the
population, and the other one removed. Thierens et al.’s (1993) treatment of

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 117

competing conventions was used to support the crossover operators. Our earlier
experiments showed that the kind of genetic operators used does not really
influence the final results (even the simplest operators do not yield significantly
different results); but the six genetic operators listed above provide a reasonable
evolution rate and the ability to reduce the size of the neural controllers.

We found that changes to the genetic operators and changes to minor
parameters of the algorithm (such as population size, the selection mechanism and
the maximum number of generations) would not bring significant changes to the best
fitness values reached. However, we also found that the final solution found would
often have more problems with the “harder” task instances (starting positions) than
with the easier task instances. This is not surprising, because standard evolutionary-
learning algorithms tend to favour a larger number of solutions to easy problem
instances over a smaller number of solutions to hard ones (Spronck et al., 2001).

In multi-objective evolutionary learning (Fonseca & Fleming, 1995), a solution
with multiple objectives has to be found. Our task instances (the nine starting
positions) correspond to the separate objectives in multi-objective learning. The
main difference between these two forms of learning is that for multi-objective
learning, the separate objectives are usually very different, whereas in task learning
the objective is the same for each of the task instances. Therefore, with task learning
problems, it is more than likely that a solution to one of the task instances also works
well on some other task instances. This is especially true for the solutions to hard
instances because they often incorporate solutions to the easier instances.

A technique sometimes used in multi-objective evolutionary learning is “doping.”
Here solutions for some of the objectives, for instance generated using well-known
heuristics, are inserted into the initial population (see, for instance, Matthews,
2000). This helps the algorithm evolve a solution for all objectives which incorporates
the pre-supplied solutions to single objectives. Note that “doping” of initial
populations does not work when applying evolutionary algorithms to a single task
because the doped solution will not be further improved in terms of fitness.

Since we suspected that solutions to the harder task instances in our box-
pushing problem would probably encompass characteristics required to solve the
easier tasks, we proposed that doping our initial populations with a solution for one
of the harder task instances could lead to higher final fitness rates. To test this, two
steps had to be undertaken: the hardest task instances needed to be identified, and
a good solution for one of these task instances had to be generated and inserted in
the initial population for our regular evolutionary algorithm.

Good solutions for each of the starting positions were evolved using the
standard evolutionary algorithm. We allowed 75 (instead of 35) generations to be
created and (obviously) the fitness was defined for a single starting position only.
We defined the hardest starting positions as those that took the longest to converge

TLFeBOOK

118 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

300

305

310

315

320

325

0 1 2 3 4 5 6 7 8 no all

Starting position used for doping

Fi
tn

es
s

Figure 7: Fitness values of experiments with doping with a single starting
position (“0” to “8”), without doping (“no”) and with doping with all
starting positions (“all”).

and even then could not reach a very high fitness value. Starting positions 3 and 5
(see Figure 4) proved to be the most difficult in this respect. It should be noted that
one would expect starting positions 2 and 6 to be more difficult since for these
positions the separation between the robot and the box is the largest, but positions
3 and 5 appear to be more difficult due to the roughness of the walls and the angle
under which the robot first tends to push the box against one of the walls.

We then ran a number of regular experiments (with 35 generations), whereby
for each initial population one of the winning individuals on an isolated starting
position was inserted. For each of these, we ran five or six experiments. We also
ran a series of experiments where we doped the initial population with a good
solution for each of the nine starting positions.

The results for the experiments with doping with a single starting position,
without doping, and with doping with all starting positions, are graphically compared
in Figure 7. The average fitness for all of the experiments with the doped populations
settles around the same fitness value as the experiments without doping, namely
311, except for those doped with a winning individual for one of the two hardest
starting positions (3 and 5). Doping with starting position 3 yielded an average
fitness of 320, and doping with starting position 5, an average fitness of 318. Both
fitness values obtained are significant improvements over our previous results
(preliminary experiments showed that the standard error of the mean (Cohen,
1995) for evolved controllers with 100 experiments is about 1.3, so the results have
an accuracy of about 2.5 fitness points with 95% reliability). Furthermore, the
overall best result over all experiments was achieved with doping of starting position
5, namely a fitness of 323.

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 119

Doping with all nine starting positions led to an average fitness of 316. This is
not a significant difference with the results achieved for doping with starting positions
3 or 5 (especially not since for the experiments with doping of all nine starting
positions also, an individual with a fitness of 323 was found).

To test whether doping with a hard starting position always manages to achieve
these high fitness results, we generated four different versions of a winning controller
for starting position 5. All of these had about equal, high fitness ratings on the isolated
starting position. Four repetitions of experiments with doping with each of these
individuals were executed. In three experiments the final result was equal to what
we found in our first test with doping with a solution to starting position 5. The fourth,
however, achieved only the same average results we achieved in our experiments
without doping.

These results show that for the box-pushing task, doping of an initial population,
with a winning individual that has been evolved on one of the hard task instances,
generally leads to better overall results than an evolution without doping. However,
the results of the experiments with alternative versions of a winning individual for
starting position 5 show that a fitness improvement over experiments without doping
is not guaranteed, since it is possible to dope with an “unlucky” individual.

It is important to remark that our experiment differs from standard machine
learning experiments in the sense that our aim is to determine the effect of doping
rather than to determine generalization performance. In the latter case, inclusion of
the starting position on which the algorithm is trained in the test data would give a
positively biased and wrong indication of generalization performance. Our results
should therefore be interpreted in terms of overall task performance due to doping,
rather than in terms of generalization performance. Incidentally, we know that the
generalization effect is present because doping with a solution for one of the hard
starting positions not only improves the results of the final controller on that
particular starting position, but also on most of the other starting positions, especially
the harder ones. We confirmed this with experiments in a more deterministic
environment.

Conclusion
Our experiments aimed at answering the following question. How can a neural

network learn to control the box-pushing task using evolutionary-computation
techniques? We investigated three characteristics of relevance to evolving robot
controllers, i.e., the fitness measure, the neural network topology and the parameters
of the evolutionary algorithm. On these three characteristics and their associated
questions, we conclude the following.

TLFeBOOK

120 Spronck, Sprinkhuizen-Kuyper, Postma and Kortmann

1. A global external fitness measure gives the best results and is easiest to
implement.

2. A recurrent neural controller, while more difficult to implement and evolve,
gives significantly better results than a feedforward controller.

3. While neither changes to most parameters of the evolutionary algorithm nor the
selection of genetic operators significantly influence the final results of the
evolution process, doping the initial population with an individual that solves
one of the harder task instances improves upon the final fitness reached.

Clearly, future work has to establish to what extent these conclusions
generalize to other (more complex) tasks. In preliminary studies on an entirely
different and more complex foraging task involving the capture of food and
avoidance of poison, we obtained similar results. Therefore, we are confident that
our results generalize beyond the box-pushing task. The simplicity of the box-
pushing task allowed us to analyse the results of our experiments and draw
conclusions on the fitness function, the neural network topology and parameters of
the evolutionary algorithm. We therefore conclude that the detailed analysis of
evolving a controller on a simple task forms a good starting point for more complex
tasks.

References
Arkin, R. (1998). Behavior-Based Robotics. Cambridge: MIT-press.
Asada, M. & Kitano, H. (1999). The Robocup challenge. Robotics and

Autonomous Systems, 29(1):3-12.
Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York:

Oxford University Press.
Brooks, R.A. (1986). A robust layered control system for a mobile robot. IEEE

Journal of Robotics and Automation, 14-23.
Cohen, P.R. (1995). Empirical Methods for Artificial Intelligence. MIT Press.
Cornsweet, T.N. (1970). Visual Perception. Academic Press.
Fonseca, C.M. & Fleming, P.J. (1995). An overview of evolutionary algorithms in

multi-objective optimization. Evolutionary Computation, 3(1):1-16.
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization & Machine

Learning. Addison-Wesley Publishing Company.
Lee, W-P., Hallam, J. & Lund, H.H. (1997). Applying genetic programming to

evolve behavior primitives and arbitrators for mobile robots. Proceedings of
IEEE 4th International Conference on Evolutionary Computation, IEEE
Press.

TLFeBOOK

Evolutionary Learning of a Box-Pushing Controller 121

Matthews, K.B., Craw, S., Elder, S., Sibbald, A.R. & MacKenzie, I. (2000).
Applying genetic algorithms to multi-objective land use planning. Proceedings
of the Genetics and Evolutionary Computation Conference (GECCO
2000), 613-620, Morgan Kaufman.

Mondada, F., Franzi, E. & Jenne, P. (1993). Mobile robot miniaturisation: A tool
for investigating in control algorithms. In Yoshikawa, T. & Miyazaki, F. (Eds.)
Proceedings of the Third International Symposium on Experimental
Robotics, 501-513. Berlin: Springer Verlag.

Montana, D. & Davis, L. (1989). Training feedforward neural networks using
genetic algorithms. Proceedings of the 11th International Joint Conference
on Artificial Intelligence, 762-767, CA: Morgan Kaufman.

Shepherd, G.M. (1990). The Synaptic Organization of the Brain (Third
Edition). Oxford: Oxford University Press.

Sprinkhuizen-Kuyper, I.G. (2001). Artificial Evolution of Box-pushing
Behaviour, Report CS 01-02, Universiteit Maastricht, Faculty of General
Sciences, IKAT/Department of Computer Science, Maastricht, The
Netherlands.

Spronck, P. & Kerckhoffs, E. (1997). Using genetic algorithms to design neural
reinforcement controllers for simulated plants. In Kaylan, A. & Lehmann, A.
Proceedings of the 11th European Simulation Conference , 292-299.

Spronck, P., Sprinkhuizen-Kuyper, I.G. & Postma, E.O. (2001). Infused
evolutionary learning. In Hoste, V. & de Pauw, G. Proceedings of the
Eleventh Belgian-Dutch Conference on Machine Learning, 61-68.
University of Antwerp.

Thierens, D., Suykens, J., Vandewalle, J. & De Moor, B. (1993). Genetic weight
optimization of a feedforward neural network controller. In Albrechts, R.F.,
Reeves, C.R. & Steel, N.C. Artificial Neural Nets and Genetic Algorithms.
658-663, New York: Springer-Verlag.

Whitley, D., Dominic, S., Das, R. & Anderson, C. (1993). Genetic reinforcement
learning for neurocontrol problems. Machine Learning, (13), 103-128.
Kluwer Academy Publishers.

Yao, X. (1995). Evolutionary artificial neural networks. In Kent et al. (Ed)
Encyclopedia of Computer Science and Technology. (33) 137-170. New
York: Marcel Dekker Inc.

Software Availability
The Khepera simulator is available from http://diwww.epfl.ch/lami/team/michel/

khep-sim/.
The program “Elegance” is available from http://www.cs.unimaas.nl/p.spronck/.

TLFeBOOK

122 Mohammadian

Chapter VII

Computational Intelligence
for Modelling and Control

of Multi-Robot Systems
M. Mohammadian

University of Canberra, Australia

Copyright © 2003, Idea Group Inc.

ABSTRACT
With increased application of fuzzy logic in complex control systems, there is
a need for a structured methodological approach in the development of fuzzy
logic systems. Current fuzzy logic systems are developed based on
individualistic bases and cannot face the challenge of interacting with other
(fuzzy) systems in a dynamic environment. In this chapter a method for
development of fuzzy systems that can interact with other (fuzzy) systems is
proposed. Specifically a method for designing hierarchical self-learning fuzzy
logic control systems based on the integration of genetic algorithms and fuzzy
logic to provide an integrated knowledge base for intelligent control of mobile
robots for collision-avoidance in a common workspace. The robots are
considered as point masses moving in a common work space. Genetic
algorithms are employed as an adaptive method for learning the fuzzy rules
of the control systems as well as learning, the mapping and interaction
between fuzzy knowledge bases of different fuzzy logic systems.

INTRODUCTION
Fuzzy logic systems are increasingly used in control applications. Their ability

to cope with uncertainty inherent in complex systems makes them an attractive

TLFeBOOK

Computational Intelligence 123

method for solving complex, uncertain and dynamic systems. Current fuzzy logic
systems are developed based on the individualistic systems. These systems are
unable to face the challenge of interaction that might be necessary between different
fuzzy logic systems solving a complex problem. There is a need for a structured
approach to design fuzzy logic systems for controlling complex systems consisting
of multiple fuzzy logic systems and fuzzy knowledge bases as is the case in a
hierarchical fuzzy logic system.

In general hierarchical fuzzy logic systems consist of several fuzzy logic
systems, each performing a specific task which are combined to form a system to
solve a complex task. These controllers interact with each other to solve the
problem at hand. The output of each fuzzy logic controller in a hierarchical fuzzy
logic system has an effect on other fuzzy logic systems and consequently to the final
output of the system.

The division of individual fuzzy systems required to solve complex problems
demands that those problems be decomposed and distributed among different
fuzzy logic systems. One of the main limitations on the application of hierarchical
fuzzy logic systems in complex problem-solving domains is the lack of methods to
structure the development of the hierarchical fuzzy logic systems. This is an
important issue when considering the robustness and efficiency of the system. A well
structured hierarchical fuzzy logic system can perform its tasks more efficiently.

The design of the fuzzy knowledge base of complex fuzzy logic systems are
based upon human experience and the operator’s knowledge of the system to be
controlled (Lee, 1990). The fuzzy rules are formulated by a trial and error method
which is not only time consuming but also does not guarantee ‘optimal’ fuzzy rules
for the system. Incorporating genetic algorithms into the design of a fuzzy logic
system ensures automatic generation of fuzzy rules for a fuzzy logic system.

This chapter is organised as follows: in the next section the learning of fuzzy
rules of fuzzy logic systems using genetic algorithms are described. The application
of this learning method to control a simulated multi-robot system using hierarchical
fuzzy logic systems is considered and simulation results are presented. Conclusions
are then drawn and further research directions are given.

LEARNING OF FUZZY LOGIC SYSTEM
USING GENETIC ALGORITHMS

Earlier in the following papers (Mohammadian, 1994; Mohammadian, 1996;
Stonier, 1998) an integrated architecture consisting of genetic algorithms and fuzzy
logic for automatic rule generation of fuzzy logic systems was proposed. A block
diagram of the fuzzy rule generation architecture is shown in Figure 1.

TLFeBOOK

124 Mohammadian

Let us consider a fuzzy logic controller with two inputs (x and y) and a single
output (z). As a first step to generating the fuzzy rules, the domain intervals of the
input and output variables are divided into different regions, called fuzzy sets. The
number of fuzzy sets is application dependent. Assume that x, y and z are all divided
into five fuzzy regions each, with x and y denoted by the linguistic terms VL, LO,
MD, HI, VH and z denoted by the linguistic terms VS, SM, MD, HI, VH. A fuzzy
membership function is assigned to each fuzzy set. Since x and y are divided into
five fuzzy sets each, a maximum of twenty five fuzzy rules can be written for the fuzzy
logic system. The consequent for each fuzzy rule is determined using a genetic
algorithm. In order to do so, the output fuzzy sets need to be encoded. It is not
necessary to encode the input fuzzy sets because they are static. The fuzzy rules
relating the input variables (x and y) to the output variable (z) have twenty five
possible combinations. The consequent of each fuzzy rule can be any one of the five
output fuzzy sets. The output fuzzy sets are encoded by assigning a number for each
fuzzy set for example, 1 = VS (Very Small), 2 = SM (Small), 3 = MD (Medium),
4 = HI (High) and 5 = VH (Very High). The genetic algorithm randomly encodes
each output fuzzy set into a number ranging from 1 to 5 for all possible combinations
of the input fuzzy variables. An individual string (chromosome) can then be
represented in the following way:

4 3 5 3 ———— 1

1 2 3 4 25

Each string is a member of a population, and a population of size n has n
number of individual strings randomly encoded by genetic algorithm. Each individual
string is then decoded into the output linguistic terms. The set of fuzzy rules thus
developed is evaluated by the fuzzy logic controller based upon a fitness value which
is specific to the system. The fitness value is application dependent. At the end of
each generation, copies of the best performing string from the parent generation are
included in the next generation to ensure that the best performing strings are not lost.
The genetic algorithm then performs the process of selection, crossover and

Figure 1: Fuzzy-GA rule generator architecture

Fuzzy GA
output regions

 knowledge base FLC
 evaluator Fuzzy rules

TLFeBOOK

126 Mohammadian

Figure 3: A three-layer hierarchical fuzzy logic system for controlling the
multi-robot system

Hierarchical Fuzzy Logic Systems for Multi-Robot Control
In this section we use the method proposed in the above section to develop

a hierarchical fuzzy logic system to control a simulated multi-robot system. Figure
2 shows the diagram of simulated robots and their targets in the workspace.

A hierarchical fuzzy logic system consisting of three layers is developed to
control and guide the robots to their target. In the first layer, a fuzzy logic system is
developed for each robot that controls each robot from any position in the
workspace to its target. The knowledge on how to control the robot is learned by
a self-learning method using genetic algorithms (see Figure 1). In the second layer
a new fuzzy logic system is developed for each robot that learns to control the speed

 Layer 1
 x, y, φ x, y, φ

 Inference Engine Inference Engine

1
θ

2
θ

 Fuzzification Defuzzification Fuzzification Defuzzification

 Data-base Knowledge base Data-base Knowledge base

 Layer 2

 D D

 Inference Engine Inference Engine

 '
1

,
'
1

Sθ '
2

,
'
2

Sθ

 Fuzzification Defuzzification Fuzzification Defuzzification

 Data-base Knowledge base Data-base Knowledge base

 Layer 3 Dr

 Inference Engine

 Fuzzification Defuzzification Robot 1, Robot2

 Data-base Knowledge base

S S1 2 1 2
` ` ' ' ` ` ` `, , ,θ θ

TLFeBOOK

Computational Intelligence 127

and slow down the robots when arriving to their target. The second layer fuzzy logic
controllers work with the first layer fuzzy logic controllers, and the knowledge base
of the second layer fuzzy logic controllers are learned upon the first fuzzy logic
system’s knowledge base. A mapping of the knowledge bases in the first layer to
the second layer is learned using genetic algorithms. In this way the system adapts
itself to the current knowledge (fuzzy control rules) available and uses this
knowledge to improve the performance of the system by learning new concepts. In
this case the current knowledge is how to control each robot to its target, and the
new concepts are the knowledge learned about how to control the speed of robots
and slow them down at their targets. For the third layer a new fuzzy logic system
is developed to avoid collision of the robots working in common workspace. Here
a mapping of the knowledge base of the second layer fuzzy logic controllers to the
third layer fuzzy logic controllers is learned using genetic algorithms. Figure 3 shows
the structure of the Hierarchical Fuzzy Logic Control system (HFLCs).

The first genetic algorithm learns the fuzzy knowledge base to control each
robot to its target using constant speed. Below a description of the fuzzy knowledge
base for layer one is given. For each robot there are three inputs x, y, φ and single
output θ. Here x, y are the cartesian coordinates in the plane, and is the heading
angle relative to the x-axis, and θ is the control steering angle also measured relative
to the x-axis (Mohammadian, 1994; Stonier, 1998).

We divide the domain regions for x, y, and θ into 5, 5, 7 and 7 regions (fuzzy
sets) respectively and assign appropriate linguistic variables. For each region (fuzzy

0 10 50 100403020 60 70 80 90

LE LC RC RICE

()m

0

1

x

x

0 10 50 100403020 60 70 80 90

LE LC RC RICE

()m

0

1

y

y

-90 0 27090 180

RB RU RV VE LV LU LB1

0

m ()φ

φ

-30 0 30-20 2010 10

NB NM NS ZE PS PM PB

µ(θ)

θ

Figure 4: Fuzzy regions and the corresponding membership functions of
x, y, f and q

TLFeBOOK

128 Mohammadian

set), a fuzzy membership function is assigned; the shape is assumed to be triangular,
see (Figure 4).

A grid of 180 configurations is chosen on the plane and associated with each
point there are 6 chosen heading directions. For this analysis the heading directions
are -50°, 45°, 90°, 135° and 240°. Figure 5 shows the spread of initial configurations
in the workspace and the target.

The robot is started random at an initial configuration chosen from the 180
available initial configurations. Genetic algorithm was used to determine a set of
fuzzy rules that will best determine the steering angle to control the robot to the
desired target (with final heading angle 180° for the first robot and 0° for the second
robot) in the first layer, (see Figure 2). Figure 6 shows the spread of initial
configurations in the workspace and the target.

Figure 5: Spread of the initial configurations in the workspace for robot1

 100

 90

 80

 70

 60

 Target
 50

 40

 30

 20

 10

 10 20 30 40 50 60 70 80 90 100

�����
�����
�����
�����
�����

TLFeBOOK

Computational Intelligence 129

The two individual fuzzy rule bases, one for each robot, constitute the full fuzzy
knowledge base in layer 1. In all there are 175 rules learned for the control of each
robot to its target.

The objective function for the first layer HFLC system is calculated as:

222)()()(trtyrytxrxObjective φφ −+−+−=

where tttrrr yxyx φφ ,,and,, are the robot’s coordinates and the heading angle
and the target's coordinates respectively. We wish to minimise the objective
function. An illustration of how the knowledge contained in the final fuzzy knowledge
base controls the robots to their targets is shown in Figure 7. Good trajectories were
obtained from all initial configurations.

Figure 6: Spread of the initial configurations in the workspace for robot2

 100

 90

 80

 70

 60

 Target
 50

 40

 30

 20

 10

 10 20 30 40 50 60 70 80 90 100

�����
�����
�����
�����

TLFeBOOK

130 Mohammadian

We now consider the adaptive learning of the rules in the second layer of the
hierarchical fuzzy logic controller using genetic algorithm. Having learned the
fundamental knowledge base for steering control of each robot to its target, we
would like to control the speed of each robot to its target. The objective here is to
develop another fuzzy knowledge base for a fuzzy logic system to determine
corrections to steering angles and speed of each robot while approaching its target.
There are two inputs which is the distance D between the robot and its target and
the current steering angle of each robot and output, θi

', Si
', i = 1.2, which is the

correction to the speed and steering angle of each robot for the next iteration.

Figure 7: Robot trajectory from initial configurations:
(a) (90, 10, 135°), (b) (90, 70, 135°); and for 2robot (c) (90, 10, 135°), (d) (70,
70, 135°)

(a) (b)

(c) (d)

TLFeBOOK

Computational Intelligence 131

 AT CL MF FA VF
 1

 0
 0 23 45 70 90 100

)(Dµ

 1 ZE SL MD FA VF

 0
 0 0.15 0.25 0.35 0.45

)(Sµ

Figure 8 shows the fuzzy sets and fuzzy membership functions of D and S.
Intervals of definition D, S, θ and θi

', are each divided into 5×5×7×7 regions (fuzzy
membership of θ and θ' are the same). There are thirty five fuzzy rules for the second
layer fuzzy knowledge base. The fuzzy knowledge base can be formed as a 5 by
7 table with cells to hold the two outputs for the corresponding actions that must be
taken, given the conditions corresponding to D and θ are satisfied. For example, a
fuzzy rule may look like :

If D = VC and θ = VS, then
`S = VS also

`θ = PB

The choice of output control signal to be set for each fuzzy rule is made by
genetic algorithm. The genetic algorithm then performs a self-directed search,
learning fuzzy rules for the second fuzzy knowledge base of the HFLC. The learning
is performed quickly and automatically with no need for operational guidance other
than the fitness values supplied to it by the HFLC.

Again here a grid of 180 configurations is chosen on the plane, and associated
with each point there are 6 chosen heading directions (same as for the first layer).
The analysis then proceeds as in the first layer, a genetic algorithm is used to
determine a set of fuzzy rules that will best determine the steering angle and speed
corrections to drive a robot to its desired target from a randomly chosen initial triplet
(x, y, φ) with speed equal to zero at the target. The same fitness function that was
used in the first layer is used, but a penalty of 1,000 is added if the speed of the robot
when it has reached its target is greater than zero. The genetic algorithm is then
allowed to evolve through the normal processes of reproduction, crossover and
mutation to minimise this fitness. Again an ‘elite’ option was used in developing a

Figure 8: The fuzzy sets and membership functions of D and S

TLFeBOOK

132 Mohammadian

new population from the old and prescaling used to improve convergence. The best
chromosome in the final population defines the fuzzy knowledge base for this, the
second layer HFLC. An illustration of how the knowledge contained in the second
layer fuzzy knowledge base is shown in Figure 9 and 10. Next we consider the
adaptive learning of the rules in the third layer of the hierarchical fuzzy logic controller
using the genetic algorithm.

Having learned the fundamental rule bases for steering control and speed of
each robot to its target, the objective here is to develop another fuzzy knowledge
base to determine corrections to steering angles θ'' for each robot to avoid the
collision of robots while approaching their target. In this layer there are three inputs

Figure 9: Robot trajectory of robot1 from initial configurations:
(a) (90, 60, 45°) and (b) (90, 10, -50°)

Figure 10 Robot trajectory of robot2 from initial configurations:
(a) (50, 90, -50°), and (b) (60, 90, 90°)

(a) (b)

(a) (b)

TLFeBOOK

Computational Intelligence 133

Dr, θ1
' and θ2

', with outputs θ1
''and θ2

'', S1
'' and S2

'' for each robot. Here Dr is the
calculated physical distance between robots, θ1

''and θ2
'' is a correction to the

steering angle of each robot and S1
'' and S2

'' is the correction to the speed of each
robot.

We divided the domain regions for Dr, θ1
'and θ2

', into 5, 7 and 7 regions
respectively and assigned appropriate linguistic variables, as before. Again for each
region a fuzzy membership function is assigned. and the shape is assumed to be
triangular. We use genetic algorithm to learn the fuzzy knowledge base for the third
layer of HFLC. The fitness of each chromosome is calculated as for second layer
fuzzy logic system and a penalty (of 1,000) is added if the robots collide. In all
simulations the genetic algorithm had a population size of 100 with mutation rate =
0.01 and crossover rate = 0.6. The genetic algorithm was run for 500 generations.
Figure 11 shows the robot trajectories using HFLC with three layers. The robots
arrive to their target while avoiding collision, and their speed is reduced as they
approach their target.

Using a hierarchical fuzzy logic control system and a genetic fuzzy rules
generator architecture, quick convergence to a collision free path in learning the
fuzzy rules of the third layer was observed. This can be attributed to the fact that the
architecture was able to learn and modify rules in the third layer fuzzy rule base using
knowledge in the second layer fuzzy rule bases.

Figure 11: (a) Robot trajectories at initial configuration:
(a) robot1 = (50, 50, 45°), robot2 = (10, 60, -50°) and
(b) robot1 = (60, 50, 90°), robot2 = (10, 60, -50°)

(a) (b)

TLFeBOOK

134 Mohammadian

CONCLUSION
We proposed using HFLC for a multi-robot control problem. We tackled the

complexity of the multi-robot control problem by dividing the problem into smaller
manageable parts. By using HFLC the number of control laws is reduced. In the first
layer of HFLC, ignoring the possibility of collision, steering angles for the control
of each robot to their associated target were determined by genetic algorithms. In
the second layer genetic algorithm was used to determine adjustments to steering
angle and speed of each robot to control the speed of the robot when arriving to
its target. Next another layer is developed to adjust the speed and steering angle of
the robots to avoid collision of the robots. If only one fuzzy logic system was used
to solve this problem with the inputs x, y, φ of each robot and D, each with the same
fuzzy sets described in this chapter then there would be 153,125 fuzzy rule needed
for its fuzzy knowledge base. Using a HFLC system we have a total number of
1,645 fuzzy rules for this system. The hierarchical concept learning using the
proposed method makes easier the development of fuzzy logic control systems, by
encouraging the development of fuzzy logic controllers where the large number of
systems parameters inhibits the construction of such controllers.

ACKNOWLEDGMENT
The guidance, support and assistance of R. J. Stonier from Central Queensland

University, Australia, to complete this project is greatly appreciated and
acknowledged.

REFERENCES
Goldberg. D. (1989). Genetic Algorithms in Search, Optimisation and Machine

Learning, Addison Wesley.
Lee C. C. (1990). Fuzzy logic in control systems : fuzzy logic controller- part 1, IEEE

Transaction on Systems, Man and Cybernetics, 20(2), 404-418.
Lee C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller—part 2, IEEE

Transaction on Systems, Man and Cybernetics, 20(2) 419-435.
Mohammadian, M., Kingham, M., Hassan, M.. (1996). Adaptive holding policies for IP

over ATM networks using fuzzy logic and genetic algorithms, IEEE International
Conference on Communication System, Westin Stamford, Singapore.

Mohammadian, M. & Stonier, R.J. (1994). Generating fuzzy rules by genetic algorithms,
Proceedings of 3rd IEEE International Workshop on Robot and Human
Communication, Nagoya, 362-367.

Raju., G.V.S. & Zhou., J. (1993). Adaptive Hierarchical Fuzzy Controller, IEEE
Transactions on Systems, Man and Cybernetics, 973-980.

TLFeBOOK

Computational Intelligence 135

Stonier, R.J. & Mohammadian, M. (1995). Intelligent hierarchical control for obstacle-
avoidance, Conference on Computational Techniques and Applications:
CTAC95.

Stonier, R. J. & Mohammadian, M. (1998). Knowledge acquisition for target capture,
Proceedings of the International Conference on Evolutionary Computing
ICEC’98, Anchorage, Alaska, 721-726.

Wang L. (1997). A Course in Fuzzy Systems and Control, Prentice Hall.

TLFeBOOK

136 Panni and Nurse

Chapter VIII

Integrating Genetic
Algorithms and Finite
Element Analyses for

Structural Inverse Problems
D.C. Panni and A.D. Nurse

Loughborough University, UK

Copyright © 2003, Idea Group Inc.

ABSTRACT
A general method for integrating genetic algorithms within a commercially
available finite element (FE) package to solve a range of structural inverse
problems is presented. The described method exploits a user-programmable
interface to control the genetic algorithm from within the FE package. This
general approach is presented with specific reference to three illustrative
system identification problems. In two of these the aim is to deduce the
damaged state of composite structures from a known physical response to a
given static loading. In the third the manufactured lay-up of a composite
component is designed using the proposed methodology.

INTRODUCTION
Inverse analyses have a variety of applications in structural mechanics in which

unknowns in a structure are determined using system identification techniques.
These techniques allow the state of the structure to be deduced from the observed

TLFeBOOK

Integrating Genetic Algorithms 137

response to given inputs. Depending on the problem to be solved, the unknowns
to be determined may be the material properties, applied loads, boundary
conditions or even the geometry of the specimen.

In general, inverse system identification techniques involve updating an analytical
model representing the structure, where the difference between some measure of
analytical response and equivalent experimental response is minimised. In this
sense, the inverse problem can also be considered an optimisation problem. Central
to the analysis is the appropriate selection of an analytical model that can accurately
predict the response of the structure, and an efficient and robust optimisation
algorithm for updating the model. Both of these components can be programmed
for specific problems, however the programming of an analytical model is largely
problem dependent and can be cumbersome. This is particularly true of structures
in which the geometry and to a lesser extent the material properties are complex.
Therefore it is considered, beneficial to develop a robust tool that can be readily
applied to a wide range of structural inverse problems without being concerned with
the complexity of geometry and/or material properties.

The method described here exploits the versatility of the LUSAS finite element
package (distributed by FEA Ltd., v13.3, 2001, www.lusas.com) by integrating it
as an object within a genetic algorithm (GA). The principal advantage of this
approach is that the broad functionality of the finite element application can be used
to model many structural scenarios, without needing to know the exact form of the
analytical model. It is sufficient to enter the geometry, the loading and the boundary
conditions without explicitly stating the form of the analytical model. This is handled
inside the FE code and effectively hidden to the analyst. It is expected that this work
will provide the basis of future automated and robust inverse analysis in a wide range
of applications.

The described method is applicable to many structural problems in which the
state of the structure is unknown. GAs offer a powerful means of finding the global
optima of functions, particularly those in which the solution space is irregular or
discontinuous. One area in which system identification problems can be of
considerable benefit is in damage detection and quantification. Another application
is the design of the manufacturing lay-up for producing composites optimised for
strength and/or lightweight rigidity. This chapter will pay particular interest to this
latter application and will reference two examples of how the described method has
been successfully applied in the former. Of particular benefit to this method is the
fact that the result of the algorithm is an updated finite element model that represents
the actual structure that can subsequently be used under in-situ loading conditions.

Early investigations into inverse damage detection were summarised by Hajela
and Soeiro (1990), who considered damage in the analytical model to be
represented by a local, reduced elastic modulus. The unknowns to be solved were

TLFeBOOK

138 Panni and Nurse

typically a set of continuous damage parameters between lower and upper limits of
0 and 1 respectively. This approach presents the advantage that the general form
of the analytical model remains the same between iterations. However, some
damage scenarios cannot be easily represented by a continuous variable between
upper and lower constraints. Often, damage is discontinuous and of a discrete
nature, complicated by the fact that the form of the stiffness matrix may change as
the model is updated. An investigation by Louis et al. (1997) used a GA and the
boundary element method to locate damage represented by rectangular cut-outs in
a plate, while Chou and Ghaboussi (1997) combined the FE method and GAs to
resolve damage in truss structures. Another form of system identification problem
in which the distribution of inclusions in a structure was deduced using GAs and an
FE model was investigated by Schoenauer et al. (1997). While these and similar
investigations are largely problem specific, Rodic & Gresovnik (1998) described
a general computer method, in which the Elfen package was combined with a
programmable shell to solve inverse structural problems.

This chapter focuses on the use of the FE package to solve structural inverse
problems of a generalised nature that unlike the above references requires no
problem specific coding once the GA has been set up to identify the attributes of
the FE model that require optimisation.. It can be readily adapted for use as a
powerful design tool to optimise the design of structures subject to physical and
performance constraints as well as being available to determine damaged properties
of a structure from its response to loading as shown by Sherratt et al. (2001) and
Panni & Nurse (2001).

GENETIC ALGORITHMS
Genetic algorithms are a set of powerful optimisation tools that are used in a

wide range of disciplines and engineering applications. They take their inspiration
from Darwin’s theory of natural selection and the survival of the fittest. Unlike
gradient based optimisation techniques, GAs operate on a ‘population’ of solutions
and are well suited to the optimisation of discrete or non-continuous functions. A
wide range of suitable texts is available to the interested reader (e.g., Goldberg,
1989) and only a rudimentary introduction is presented here.

At the heart of the algorithm is the concept that string-like (genotype)
representations of actual numerical solutions (phenotype) to a potential problem are
manipulated using simple genetic operators. In most cases this is an appropriate
binary representation but more sophisticated representations have been successfully
used. To begin, an initially random population of potential solutions is generated.

TLFeBOOK

Integrating Genetic Algorithms 139

Each solution in the population is then converted into its genotype representation
and assigned a numerical fitness value based on how well that particular solution
minimises an objective function. Subsequent generations are developed by
probabilistically selecting pairs of parent solutions to combine and produce
offspring solutions in the next generation. Combination of the parents to produce
offspring is achieved using a ‘crossover’ operator that combines certain
characteristics of both parent solutions. The selection of parents is biased in favour
of those that have the best fitness values. In this way, subsequent generations exhibit
the beneficial characteristics of the previous generation, and any characteristics that
lead to poor fitness values are rapidly excluded from the population. In general the
average fitness of subsequent generations can be seen to rapidly improve, and the
fittest solution in each population should converge to that value which minimises the
objective function.

A pseudo-code representation of the GA to solve inverse problems is listed
below:
1. Input GA control parameters, (size of population, probabilities of mutation

and crossover, etc.)
2. Generate a population of random solutions representing possible damage

scenarios
3. For each individual

Convert solutions into suitable coded form
Build FE model
Solve FE model
Extract response data
Evaluate fitness

4. Generate subsequent population of coded solutions, based on the fittest
individuals from the previous generation applying crossover, reproduction
and mutation

5. Loop steps 3-4 for fixed number of iterations or until specified convergence
criterion is met

The essential advantage of genetic algorithms is the capacity to very quickly
search the complete solution space and locate optimal areas. These optimal areas
can then be rapidly exploited to find the global optima.

The two genetic operators at the heart of a genetic algorithm are crossover and
mutation. In crossover, the parents are split at a random location and swapped over
so that half of the solution comes from each parent. In mutation, a random bit in the
string is inverted from a ‘1’ to ‘0’ and vice versa. Each of these operations is applied
with a given probability.

TLFeBOOK

140 Panni and Nurse

IMPLEMENTATION
The method uses the LUSAS finite element package. This commercially

available general-purpose finite element application incorporates a user
programmable interface, which was designed to help automate repetitive FE
actions.

The interface allows ASCII script (command) files to be executed within the
application. These script files contain the GA code and the LUSAS-specific
instructions for building the geometry of the model, solving it and interrogating the
results database to extract the response data. The output response data is then used
to formulate the objective function and determine the fitness of that particular
solution.

The scriptable interface is built around a set of core objects which an
applications programmer can manipulate using specific methods. Both VBSCRIPT
and JSCRIPT can be used to write the scripts. Although these scripting languages
are relatively basic, they have sufficient functionality to describe even complicated
genetic algorithms.

The script file takes the general form shown below:
$ENGINE=scripting engine
{script body}
{procedures and functions}

The script body contains the main sub-routines (see below) that control the
GA, while the procedures and functions represent often-repeated standard routines
that are called from more than one of the sub-routines in the script body:

Input_Data (Requests user input of GA parameters)
Generate_Original_Population (Randomly generates initial population)
Evaluate_Population (Builds and solves FE models, extracts

data and evaluates solution fitness
values)

Generate_New_Population (Uses genetic operators to build a new
population)

Output_GA_Data (Monitors the progress of the GA)

On executing the command file from within LUSAS, the user is prompted to
input the control parameters of the GA including the size of the population. No
further user input is required, and data regarding the progress of the algorithm is
output to a results text file.

TLFeBOOK

Integrating Genetic Algorithms 141

EXAMPLES
Damage Detection

The following examples demonstrate how the method has been used to resolve
a number of different damage scenarios incorporating different encoding methods
and a priori knowledge.

Firstly, with reference to damage detection in composites, the central idea of
the approach is that an analytical model representing a loaded structure is
systematically updated to minimise the difference in structural response between the
model and equivalent experimentally obtained data. Mathematically, the problem
is stated as:

Minimise objective function, f = dexp - dana

where dexp is a vector of j experimentally determined structural responses, z; and
dana is the corresponding vector of j analytically determined responses, Z.

dexp = [z1,z2,…zj]T

dana = [Z1,Z2…Zj]T

Experimental input data is fed into a GA, which automatically uses it to
iteratively update the analytical model and minimise the above objective function.

Terminate algorithm

Measure experimental
response

Build analytical model containing
 damage and solve for structural

 response

Compare experimental and
analytical response

Is the difference between
analytical and experimental

response minimised?

Update analytical model
and solve for structural

response

YES

NO

Figure 1: General approach to resolve inverse system identification problems
in which the damaged state of a structure is sought

TLFeBOOK

142 Panni and Nurse

On termination of the algorithm, the analytical model should represent the actual
damage that is present in the structure.

A general system identification procedure is represented as a flow chart in
Figure 1.

In the first instance, we wish to fully define a delamination within a laminated
composite panel using whole-field measurements of out-of-plane deformation
when the panel is subject to vacuum loading. In this case, both the delamination
depth and shape are the unknowns to be solved. The delamination is encoded in the
GA by converting the surface of the panel into a 16x16 square grid, Figure 2(a).
Each of these 256 grids can either contain a delamination or not. Therefore the
coding comprises a 256 long binary string with each bit representing a grid. A ‘1’
represents the presence of a delamination while a ‘0’ represents no delamination.
The remaining unknown is the depth. Since there are a finite number of integer
depths that a delamination can occur at, the depth is represented by appending an
integer to the front of the binary bitstring. This encoding of the information allows
various shapes of delamination to be considered—with greater resolution afforded
by a finer mesh. The fitness value can be determined by evaluating the difference in
peak displacement values for the experimental and analytical models. However, this
does not guarantee convergence to a unique solution. Therefore, the fitness function
is constrained using penalty functions that accommodate a priori knowledge of the
solution. In this case, the pattern of the surface displacement plots is approximated
using a series of inequality rules. Any solution that violates any rule has a penalty
function appended to the fitness function. In this manner the GA favours those
solutions that best match the overall pattern of the experimental data and ensure
convergence to a unique solution.

Another application involves the detection of longitudinal cracks along the
corners of pultruded composite beams, Figure 2(b) using a set of reduced beam
bending stiffnesses obtained from 3-point bend tests as input for the GA. Assuming

Figure 2: (a) Deformation pattern of composite laminate surface under
vacuum loading; (b) FE mesh including longitudinal cracks in a box-section
beam

(a) (b)

TLFeBOOK

Integrating Genetic Algorithms 143

the a priori knowledge that the cracks appear in pairs along the edges of a surface
and that they are of equal length, the crack information can be encoded in terms of
a surface, a length of crack and the starting point. By definition the model is
discretised in terms of the finite element mesh and therefore, rather than represent
crack length and starting position in terms of continuous values, they can be
represented in terms of discrete numbers of elements along the length of the beam.
These integer values are then converted into binary code and concatenated to
represent the full solution code. This application is described in more detail in
Sherratt et al. (2001).

Manufacturing Lay-Up Design
The high strength-to-weight ratio properties of fibre-matrix composites are a

function of the orientation of different laminae within the sandwiched structure.
Consequently, the design engineer must carefully select and optimise where
possible the orientation of the fibres to produce the desired strength and stiffness
characteristics. Though in current practice this is still something of a ‘black art’ and
new designs rely much on ‘tried and trusted’ solutions.

Here, the FE/GA tool is applied to a laminated box-section beam shown in
Figure 3 (dimensions in mm) with the aim of finding the laminate lay-up that
minimises boom-tip deflection subject to given design and strength constraints. The
objective function to be minimised is formulated as a penalised boom-tip displacement,
which includes a penalty term for violation of the strength constraint. Since the aim
of the problem is to find a stacking sequence, which comprises a list of ply
orientations for both the box-section flanges and the webs which minimises the
overall deflection of the box-section, it is necessary to develop a chromosomal or
genotype representation for the design variables. The stacking sequence or lay-up
of the laminate is simply a list of ply fibre orientations that make up the entire
thickness of the laminate.

4000
300

10

10,000N

X

Y

Fixed in Y

Fully Fixed 300

Figure 3: Geometry and loading of box section beam for minimum deflection
lay-up design

TLFeBOOK

144 Panni and Nurse

Chromosome = 2 1 3 2 2 3 1 3 2 1 1 1 3 3 3 3 2 2 2 2

Flange Web

Symmetry

Symmetry

Web

Flange

Laminate Representation
Phentype: [45/0/90/452/90/0/90/45/0]s
Genotype: 2132231321

Laminate Representation
Phentype: [02/904/454]s
Genotype: 1133332222

Web

Flange

Flange

Web

Key

0o

+45o

90o

Ply Orientation

1
2

3

Genotype

Figure 4: Chromosome definition for box-section beam lay-up optimisation

Three discrete ply orientations will be adopted (0o, ±45o and 90o). This lends
itself well to representation using a three integer string-like genotype code with each
integer in the string representing a different ply orientation (Figure 4). Additional
constraints are enforced by the particular genotype encoding adopted and by
introducing a repair strategy that eliminates infeasible solutions from the gene-pool
and replaces them with feasible ones. The method uses a 3 digit real encoding
system to represent the discrete laminate ply orientations in both the flange and
webs.

TLFeBOOK

Integrating Genetic Algorithms 145

The problem is a classical laminated composite optimisation problem and
similar problems have been previously addressed, though only to simple geometry
panels subject to either in-plane and/or out of plane bending. Significantly less
research has been performed on more complex geometry models, without which
it is unlikely that industry will adopt the method. In this particular area the work
represents a significant contribution to the present body of knowledge.

Analysis of the results from the perspective of proportions of ply orientations
in the laminate shows a clear convergence among the tests to a smaller set of
solutions that have the same proportion of 0o, ±45o and 90o fibres. These are
summarised in Figure 5.

The fittest individual found by the GA in 100 test runs is in good agreement with
results that might be expected using sound engineering principles. This indicates that
the approach adopted here may prove to be a valuable tool in this type of design
optimisation problem.

FUTURE TRENDS
The principal advantage of this method is the relative ease of implementation,

which requires only knowledge of GAs and simple script language programming.
It avoids the relatively complex and tedious task of manually assembling and solving
FE problems. Although the authors recognise that the present method may be
computationally expensive, since it requires many standard FE solutions to be
solved, this may be offset in the future with the increasing availability of computing

0

2

4

6

8

10

12

14

16

18

80
/10

/10
-60

/30
/10

80
/20

/0-
60

/30
/10

80
/10

/10
-50

/40
/10

70
/20

/10
-70

/20
/10

70
/20

/10
-60

/30
/10

70
/20

/10
-60

/40
/0

80
/20

/0-
70

/20
/10

80
/20

/0-
50

/40
/10

80
/10

/10
-60

/20
/20

80
/20

/0-
50

/30
/20

80
/10

/10
-70

/20
/10

80
/10

/10
-60

/40
/0

80
/10

/10
-50

/50
/0

80
/10

/10
-50

/30
/20

70
/20

/10
-50

/50
/0

80
/20

/0-
60

/20
/20

80
/10

/10
-50

/20
/30

80
/0/

20
-60

/30
/10

80
/0/

20
-50

/40
/10

70
/20

/10
-70

/30
/0

70
/20

/10
-60

/20
/20

70
/20

/10
-50

/40
/10

70
/10

/20
-60

/40
/0

70
/10

/20
-60

/30
/10

70
/10

/20
-50

/40
/10

Flange-Web Orientation Combinations

Nu
m

be
r o

f T
es

ts

Re
tu

rn
in

g
Co

m
bi

na
tio

n

Figure 5: Distribution of algorithm test runs versus orientation combination

TLFeBOOK

146 Panni and Nurse

power. Furthermore, the inherent parallelism in GAs means that the described
method may significantly benefit from developments in parallel computing.

CONCLUSIONS
A method for integrating GAs within a finite element environment has been

presented. This approach allows the possibility of applying the undoubted benefits
of GAs to a wide variety of structural problems. This present chapter has described
how an integrated GA and FE analysis can be used to solve structural problems
associated with composites. However, the same method can be used to solve a
whole range of system identification for structural inverse problems in which
unknowns such as applied load may be resolved. A further application of this
method is the automated optimisation of structural design, in which a structure and
a material are designed subject to physical, cost and manufacturing constraints.

REFERENCES
Chou, J.-H. & Ghaboussi, J. (1997). Structural damage detection and identification

using genetic algorithms. Intelligent Engineering Systems Through Artificial
Neural Networks. 7, 395-400.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley Publishing Co.

Hajela, P. & Soeiro, F.J. (1990). Recent developments in damage detection based
on system identification methods. Structural Optimization, 2, 1-10.

Louis, S.J., et al. (1997). Flaw detection and configuration with genetic algorithms.
In Dasgupta, D. & Michalewicz, Z. (Eds.), Evolutionary Algorithms in
Engineering Applications. Springer Verlag.

LUSAS v13.3 (2001). London: FEA Ltd Kingston
Panni, D.C. & Nurse, A.D. (2001), Integrating genetic algorithms and the finite

element method to solve structural inverse problems. International Conference
on Computational Intelligence for Computer Modelling, Control, and
Automation, Las Vegas, July 10–12, 38-46.

Rodic, T. & Gresovnik, I. (1998). A computer system for solving inverse and
optimization problems. Engineering Computations. 15(7), 893-907.

Schoenauer, M., et al. (1997). Identification of mechanical inclusions. In: Dasgupta,
D. & Michalewicz, Z. (Eds.), Evolutionary Algorithms in Engineering
Applications. Springer Verlag.

Sherratt, P.J., Panni, D.C. & Nurse, A.D. (2001). Damage assessment of
composite structures using inverse analysis and genetic algorithms. Key
Engng. Matls, 204-205, 409-418.

TLFeBOOK

Integrating Genetic Algorithms 147

SECTION III:

FUZZY LOGIC
AND

BAYESIAN
SYSTEMS

TLFeBOOK

148 Gestwa and Bauschat

Chapter IX

On the Modelling
of a Human Pilot

Using Fuzzy Logic Control
M. Gestwa and J.-M. Bauschat

German Aerospace Center, Germany

Copyright © 2003, Idea Group Inc.

ABSTRACT
This chapter discusses the possibility to model the control behaviour of a
human pilot by fuzzy logic control. For this investigation a special flight task
is considered, the ILS tracking task, and an evaluation pilot has to perform
this task in a ground based flight simulator. During the ILS tracking task all
necessary flight data are stored in a database and additionally the pilot
commands are recorded. The development of the described fuzzy controller
(the fuzzy pilot) is based on cognitive analysis by evaluating the recorded flight
data with the associated pilot comments. Finally the fuzzy pilot is compared
with the human pilot and it can be verified that the fuzzy pilot and the human
pilot are based on the same control concept.

INTRODUCTION
It is a must for manned real-time simulations to take Man/Machine Interface

(MMI) aspects into account. The demanded quality of the MMI-simulation
depends on the particular aim of the simulation. Up to now, however, no clear

TLFeBOOK

Modelling of a Human Pilot 149

answer is given to the question: how realistic the real-time simulation at least has to
be in relation to a certain flight task? One typical example is the application of motion
cues. Simulated motion is not necessary in the case of so-called Flight Training
Devices (FTDs) used generally for initial and procedure training. These less
complex simulators replicate the actual aircraft cockpit, but do not provide a visual
system or motion system. On the other hand, it is well known that the pilot’s
behaviour is influenced by the aircraft motion in the case of high precision tasks, e.g.,
when he has to perform an ILS-approach under bad weather conditions such as
heavy wind shear, turbulence and gusts (see, e.g., Bussolari et al., 1984; Schänzer
et al., 1995). High gain tasks increase the workload of the pilot significantly. Hence,
a deeper understanding of these subjectively sensed influences on the pilot’s
reactions is necessary.

Particular aspects of MMI problems are covered at the Institute of Flight
Research of the German Aerospace Center (DLR) by a project named AIDA
(Airborne Identification and Development of simulation fidelity criteria using
ATTAS). It deals with the comparison of ground-based simulation and real flight.
Different experienced commercial pilots have to perform well defined tasks on two
simulators with different equipment standards and on the DLR in-flight simulator
ATTAS. The results are used twofold: (1) to classify the pilot tasks and (2) to define
the demands on the simulator equipment to enable an adequate conduction of the
given task. The project also provides additional information related to pilot
workload aspects, which leads to a better understanding of the man/machine
interface between pilot and aircraft (see Bauschat, 2000).

The data gained from the simulator sessions and flight-tests are evaluated in
various ways to gain as much information as possible. Data evaluation in the time
domain delivers a good idea about the quality of a task solution. The assessment of
the solution quality is additionally supported by statistical evaluations. Pilot’s effort
to solve a task can be described in the frequency domain, where power spectral
density data are used. But the investigation of the individual strategies pilots are using
to achieve a good performance during a particular task makes it necessary to model
the pilot and the MMI. Investigations based on pilot models support a better
understanding of the interaction between pilot and MMI. Sub-models describing
particular behaviour patterns, which have been found evaluating the AIDA
database, should be easily added to the pilot model. Such a sub-model may, for
example, include the influence of the pilot’s subjective impressions on his task
performance.

With respect to the idea of the AIDA project, it was soon clear that a
knowledge-based method should be used to model the control characteristic of a
pilot. In this particular case a fuzzy logic approach has been chosen. Fuzzy logic
provides a lot of benefits, because verbal descriptions which an expert has given can

TLFeBOOK

150 Gestwa and Bauschat

be introduced directly into a controller approach. The controller itself is easy to
handle from the point of view of an engineer, which means it is easy to modify.

BACKGROUND
In the field of airplane system technology, investigations focusing on Human

Factors or Man/Machine Interface have played an important role for decades.
Airplane handling qualities can only be evaluated properly, if pilots and their
subjective impressions are taken into account. Basic work has been done here by
Cooper et al. (1969). The so-called Cooper/Harper Rating Scale provides the
evaluation pilot with a tool to rate handling qualities and own effort between 1
(excellent) and 10 (not controllable). Pilot models with different degrees of
complexity have been used for theoretical investigations based on computer
simulations (see, e.g., McRuer, 1988).

A typical example for the necessity of investigations based on real-time ground
simulations is described by Ashkenas et al. (1983). During one of the first free flights
of the shuttle orbiter, a PIO incident occurred during the approach to the runway.
PIO stands for Pilot Induced Oscillation and can be observed in airplanes with fly-
by wire control systems. PIO is characterised by disharmonic pilot control inputs
leading to unintended heavy aircraft motions. Mainly system time delays in
combination with closed loop pilot tasks can trigger PIO prone situations. Duda
(1997) describes the effect in greater detail. The PIO problem of the space shuttle
has been investigated with the help of a very simple real-time simulator and has been
solved. The effect observed in the ground-based simulation was modelled and
simulated additionally using a linear pilot model.

How realistic a flight simulation is depends on the quality of the simulator.
Fixed-based simulators are useful if the pilot has to perform tasks where the motion
cues have minimal importance. Typical start or landing procedures, under Instrumental
Flight Rules (IFR) conditions, with minimum external disturbances, can be easily
performed.

Moving based simulators give a pilot a more realistic impression of a flying
aircraft if the simulators are additionally equipped with a good visual system.

However, deficiencies of ground based simulators are well-known (see, e.g.,
Harper, 1991). Some of them are as follows:
• In the case of a fixed-based simulator, there are no proprioceptive cues.
• A motion-system has physical limits and therefore some cues are more or less

suppressed (i.e., only 10-15% of the real roll acceleration is available).
• Some cues, such as the load factor in the vertical aircraft axis, are missing.
• Because of washout filtering, some cues are generated which never appear in

a real airplane. The design of washout filters is still a kind of black art .

TLFeBOOK

Modelling of a Human Pilot 151

• The harmonisation between aircraft motion-system and visual-system dynamics
is a problem area.

• The workload of the pilot in a simulator and in real flight is generally different.
Investigations concerning PIO effects, for instance, have shown this.

The influence of these effects on a pilot need further investigation and is done
wthin the AIDA framework. If the effects can be modelled, they can be implemented
within the software system of the above mentioned MMI model.

Most of the pilot models mentioned at the beginning of this section have the
disadvantage that their potential concerning adaptation to a particular pilot performing
a particular task is not very high. At the DLR Institute of Flight Research, it was
decided to find a suitable pilot model approach, which satisfies most of the demands
in the above mentioned AIDA project. Broad discussions with soft computing
experts and an intensive literature study (e.g., Zadeh, 1964; Mamdani, 1974)
ended in the decision to try a fuzzy logic control approach.

THE ILS TRACKING TASK
In order to get the necessary data for the development of the fuzzy pilot, a

particular flight task was performed in a fixed base ground simulator (no motion
system). During the task all necessary data are stored, e.g., flight path angle,
airspeed, altitude, etc. Additionally the pilot documented control commands and his
strategy. These pilot commentaries were recorded with a dicta phone. This
particular flight task is called ILS tracking task (abbrev. ITT) and can be described
in the following way (see Bauschat, 2000):

The ITT consists of seven phases. At the beginning the aircraft flies with
the target speed established on the glide slope. After 70 sec the glide slope
transmitter shifts to a new position so that the glide slope indicator on the
display in the cockpit moves downwards or upwards to its maximal
deflection. In the case that the aircraft is above the glide slope, the pilot
has to reduce the altitude. For this maneuver he has 70 seconds. After this
procedure the glide slope transmitter is shifted again so that the glide slope
indicator moves upward to its maximal deflection. Now the aircraft is
under the glide slope and the pilot has to climb with the aircraft. Again the
pilot has 70 seconds to compensate the glide slope deviation. In the next
phase the glide path indicator moves downward again, afterwards
upward again, etc. The whole ITT task requires 490 seconds, whereby
the glide path indicator moves three times downward and three times
upward in a given sequence.

TLFeBOOK

152 Gestwa and Bauschat

Figure 1: Artificial ILS

The implementation of the ITT in the flight simulator is based on a synthetic glide
slope transmitter resp. a synthetic navigation system. On the artificial glide slope, the
aircraft has a glide path angle of 1.5°. The maximal deviation amounts to 0.25° (see
Figure 1). At the first transmitter movement, the pilot has to compensate an altitude
difference of 196 m. The described ITT focuses only the longitudinal motion of the
aircraft.

DEVELOPMENT OF THE FUZZY PILOT
The pilot has to observe a lot of different instruments in the cockpit. To find out

the information an evaluation pilot uses to perform the ITT, he has to fill in a
questionnaire. In this questionnaire the pilot describes the priority of the instruments
he needed. A given scale is divided into ten priorities, which are subdivided into
three classes again (see Table 1).

This information is a basis to find the measurements for the fuzzy pilot. The
circled numbers in Table 1 are the priorities of a professional pilot who has
performed the ITT. The priorities of the pilot show that five indicators are important
to perform the ITT. By three of them the signal dynamic is important, too. All very
important indicators listed in Table 1 can be used for the fuzzy pilot model. The

shifting of the glide slope transmitter

glide slope
position of the glide

slope transmitter
before shifting

new position of the
glide slope transmitter

+

=0.25

FG
ma

x

GC=1,5°

-FG
ma

x

figure_1.eps

70 sec
140 sec

210 sec
280 sec

420 sec
350 sec

TLFeBOOK

Modelling of a Human Pilot 153

dynamics of the indicators can be substituted with the ratio of difference without
information loss. It is obtained by

∆t

 . x − x x =

 t + ∆t t
.

Between some information exists a dependence, which can be used to reduce
the number of measurements. For example the flight path angle can be derived from
the glide slope and its change due to time. If an aircraft is established on the glide
slope with the proper airspeed, the flight path angle will be proper too. Consequently
the flight path angle can be disregarded as a measurement. The distance (DME) can
be derived from the sensitivity of the glide slope indicator. A reduction of the
distance causes a fast movement and a frequent change of the glide slope indicator.
The commentary of the pilot reflects this reduction, too. So, the number of
measurements can be reduced from seven to four. These are the glide slope ∆ε, the
derivative of the glide slope ∆ ε ˙ , the speed difference ∆v and the derivative of the
speed difference ∆ v ˙ . The control commands of the fuzzy pilot are defined by the
control elements in the cockpit. Consequently the fuzzy pilot delivers a side stick
command and a thrust command.

(1) Priority of the instrument
 very important important unimportant
pitch 1 2 3 4 6 7 8 9 10
speed trend 1 2 4 5 6 7 8 9 10
speed difference 1 2 4 5 6 7 8 9 10
glide slope 2 3 4 5 6 7 8 9 10
flight path angle 2 3 4 5 6 7 8 9 10
altitude 1 2 3 4 5 6 7 8 9
vertical speed 1 2 3 4 5 7 8 9 10
DME 1 2 4 5 6 7 8 9 10
(2) Priority of the instrument dynamic
 very important important unimportant
pitch 1 2 3 4 5 7 8 9 10
speed trend 1 2 3 4 5 6 7 9 10
speed difference 1 2 4 5 6 7 8 9 10
glide slope 2 3 4 5 6 7 8 9 10
flight path angle 1 2 3 5 6 7 8 9 10
altitude 1 2 3 4 5 6 7 8 9
vertical speed 1 2 3 4 5 6 7 8 9
DME 1 2 4 5 6 7 8 9 10

Table 1: questionnaire of the instrument priority

Table 1: Questionnaire of the instrument priority

TLFeBOOK

154 Gestwa and Bauschat

Specification of the Linguistic Terms and their Fuzzy Sets
In the following subsections the specification of the linguistic terms and their

associated fuzzy sets are described. As examples the glide slope derivative and the
side stick command are explained in detail. The specification is based on the pilot
commentary and the recorded flight data.

Derivative of the Glide Slope ∆∆∆∆∆ ε ˙
In the diagram of the glide slope derivative, the movement of the glide slope

transmitter can be clearly recognised. After the glide slope transmitter has moved,
the derivative reduces its value always in the range from -0.02°/sec to 0.02°/sec
(see the marked range in Figure 2).

The investigation of the pilot reaction shows that he doesn’t make any control
command immediately after the glide slope transmitter starts to move. This
behaviour is normal because the pilot knows that he cannot follow the glide slope
directly and that a new phase of the ITT starts. So, the pilot waits until a quasi-
stabilised situation is indicated and then he starts to compensate the glide slope
deviation.

To model this effect the fuzzy pilot has a separate controller. The measurement
of this controller is the glide slope derivative with the universe [-0.1°/s,0.1°/s], and
in agreement with Figure 2, the three linguistic terms below, zero and above are
defined. This fuzzy set overlaps at the broken lines. Table 2 includes the definition
points.

Figure 2: Glide slope derivative

1. ITT
2. ITT
3. ITT

time in sec100 200 300 400 5000

0.09

0.06

0.03

0.00

-0.03

-0.06

-0.09

-0.12

glide slope derivative of the pilot in degree/sec figure_2.eps

TLFeBOOK

Modelling of a Human Pilot 155

Figure 3: Zoom of the marked area of Figure 2

Table 2: Points of the measurement

The control commands of the separate controller are the two linguistic terms
yes and no which indicate that the glide slope transmitter has moved. So, the rule
base contains the three rules:

IF ∆ ε ˙ IS above THEN shifting IS yes
IF ∆ ε ˙ IS zero THEN shifting IS no
IF ∆ ε ˙ IS below THEN shifting IS yes

Now the linguistic terms of the glide slope derivative have to be defined in the
universe [-0.025°/s, 0.025°/s]. To describe the strategy of the glide slope derivative
in this universe, the area between the two broken lines in Figure 2 is enlarged in
Figure 3.

In Figure 3 six horizontal lines and the zero line can be seen. Based on this
classification the universe is divided into six areas and each area represents a special
situation. First the three areas above the zero line will be explained:

zoom of the glide slope derivative of the pilot in degree/sec

-0.025

-0.015

-0.005

0.005

0.015

0.025

time in sec0 100 200 300 400 500

2. ITT
3. ITT

1. ITT

figure_3.eps

µ below zero above
0 -0.100 -0.025 0.015
1 -0.025 -0.015 0.025
1 -0.025 0.015 0.025
0 -0.015 0.025 0.100

table 2: points of the measurement

TLFeBOOK

156 Gestwa and Bauschat

• [0.01 °/s, 0.02 °/s]:
The glide slope transmitter has reached a new position. The motion of the glide
slope indicator is normal. The pilot starts to stabilize the aircraft on the glide
slope.

• [0.0025 °/s, 0.01 °/s]:
The aircraft is in stationary descent or climb. The glide slope deviation is
reduced.

• [0.0 °/s, 0.0025 °/s]:
The aircraft is near to the glide slope and has to be stabilized on the glide slope.
According to the commands of the pilot the airplane oscillates around the glide
slope.

• 0 °/s:
On the glide slope the derivative should have a value of zero. Consequently the
aircraft is in a stationary state.

This description can be transferred to the area below the zero line. With the
help of the commentaries of the pilot seven linguistic terms can be defined. The terms
are:

descent rapidly, descent, descent slightly, zero, climb slightly,
climb, climb heavily

and the determining points of their fuzzy sets are summarized in Table 3.

Side Stick Command qSS
The side stick deflections are given as inputs to a rate-command system and

Figure 4 shows the side stick commands of an ITT. It can be seen that the pilot
commands have mainly the shape of short peaks. This control behaviour is typical
for a pilot who is using a rate command system. A rate command system is a flight
control system which stabilises an aircraft on a pitch angle the pilot has commanded.
To model this control behaviour the maximum method will be used for defuzzification
because this method causes a pulsed behaviour (see Kruse et. al., 1993; Kahlert
et. al, 1993). With this approach the output of the fuzzy pilot will be defined by the
maximum of the fuzzy-set. To find these maximum an investigation of the pilot side
stick commands is helpful. The maxima can be defined roughly within three positive
and three negative classes (dashed lines in Figure 4).

Table 3: Points of the glide slope deviation
µ descent

rapidly
descent descent

slightly
zero climb

slightly
climb climb

rapidly
0 -0.0250 -0.0150 -0.0050 -0.0010 0.0 0.0020 0.0120
1 -0.0150 -0.0120 -0.0025 0.0 0.0025 0.0075 0.0150
1 -0.0150 -0.0075 -0.0025 0.0 0.0025 0.0120 0.0150
0 -0.0120 -0.0020 0.0 0.001 0.0050 0.0150 0.0250

bl i f h lid l d i i

TLFeBOOK

Modelling of a Human Pilot 157

Figure 4: Side stick command of the pilot

With the values in Figure 4 and the pilot comments in addition the number of
linguistic term of the side stick commands can be derived. They are:

pull heavily, pull, pull slightly, zero, push slightly, push, push heavily
The universe of the side stick command is defined by the side stick signal with

the interval [-1,1]. The linguistic terms are represented by triangular fuzzy sets and
are presented in Table 4.

After all fuzzy sets of the measurements and the control commands are defined,
the structure of the fuzzy pilot can be developed (see Figure 5).

Definition of the Rule Base
Now it is necessary to define the rule base of the fuzzy pilot using the specified

linguistic terms. First the basic strategy of the pilot control behaviour should be
determined from the time histories (see Figure 6) and the pilot comments. The basic
strategy of the pilot to perform the ITT can be divided into three phases:

In the first phase the glide slope transmitter is moving. The absolute value of
the glide slope derivative is large. Since he knows that he cannot follow the glide
slope indicator, he waits until the indication moves slowly.

µ pull
heavily

pull pull
slightly

null push
slightly

push push
heavily

0 -1.0 -0.4 -0.2 -0.1 0.0 0.1 0.2
1 -0.4 -0.2 -0.1 0.0 0.1 0.2 0.4
0 -0.2 -0.1 0.0 0.1 0.2 0.4 1.0

Table 4: Points of the side stick command

0 100 200 300 400 500time in sec

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
side stick command in %/100 figure_4.eps

TLFeBOOK

158 Gestwa and Bauschat

In the second phase the glide slope indicator moves slowly. Now the pilot
starts compensating the glide slope deviation. Depending on the actual situation, he
initiates a descent or climb. In this phase he is reducing the glide slope deviation very
fast. He brings the aircraft as fast as possible close to the glide slope. During the
descent or climb, the pilot only has to wait and to observe.

In the third phase the aircraft is near the glide slope. Now the pilot has to
stabilize the aircraft on the glide slope. For this procedure he stops the descent or
climb by pulling or pushing the side stick. Consequently the descent or climb is
interrupted and the aircraft will be stabilized on the glide slope as well as possible.
In this state only slight glide slope deviations have to be compensated by the pilot.

Evaluating the airspeed difference it is remarkable that in some situation the
power lever has reached the lower limit but the speed is still too high. In this situation
the pilot can reduce the speed difference only with the side stick. If he pulls the side
stick, the aircraft interrupts the descent and the glide slope deviation is not
decreasing. But it is the task of the pilot to compensate the glide slope deviation as
quickly as possible. So, he has to accept the interim speed deviation. Furthermore
a strong relationship between the side stick and the thrust command exists which
arises from the energy balance and is considered by the pilot. The energy balance
is the sum of kinetic and potential energy:

Figure 5: Structure of the fuzzy pilot

aircraft

0°

0°/s
FG

-

-

-

-

72 m/s

0 m/s
2

Fv

fuzzy pilotseparate
controller

nominal values

fu
zz

y
if

ic
at

io
n

d
ef

u
zz

y
if

ic
at

io
n

fu
zz

y
in

fe
re

n
ce

FqSS

thrust
limitation

Ft

+* PLA
PLA

I

Fv

I

FG

I

figure_5.eps

TLFeBOOK

Modelling of a Human Pilot 159

2
kinpottotal mv

2
1mghEEE +=+=

During a small interval the weight of the aircraft changes very slowly. With the
assumption the potential energy depends only on the altitude and kinetic energy
depends only on the speed. In this case the pilot pushes the side stick until the aircraft
reduces the altitude. Potential energy will be transformed in kinetic energy. Without
a thrust command the energy balance is constant and consequently the speed
increases. According to this the pilot pulls the side stick without a thrust command.
The aircraft reduces the speed and increases the altitude. The control strategy and
the comments of the pilot reflect this fact and can be described as follows:
• If the pilot pulls the side stick, the corresponding thrust command results from

the following aspects: If the aircraft has a positive speed difference, no thrust
is given because the climb reduces the speed difference. If the speed difference
is roughly equal zero, a very small amount of thrust has to be set to hold the
speed. If the aircraft has a negative speed difference, thrust has to be given
because the climb will increase the existing speed difference.

• If the pilot pushes the side stick, the thrust command results from the following
aspects: If the aircraft has a negative speed difference, no thrust is given

Figure 6: Strategy of the pilot

60 70 80 90 100 110 120 140time in sec

0.00

0.10

0.15

0.05

-0.05

0.0

0.2

-0.2

0.4

-0.4

68

72

76

80

0.20
glide slope in degree

side stick command in %/100

thrust command in degree

waiting first and
than starting descent

steady state descent
as possible

stabilization on
the glide slope

figure_6.eps

TLFeBOOK

160 Gestwa and Bauschat

because the descent reduces the speed difference. If the speed difference is
roughly equal to zero, thrust has to be reduced a little bit to hold the speed. If
the aircraft has a positive speed difference, thrust has to be reduced because
the descent will increase the existing speed difference.

• The pilot increases only the thrust. The engines of the aircraft are beyond the
centre of gravity. On account of this an increment of the thrust produces a pitch
up moment. To compensate this upward movement, the pilot gives a small
pitch down command.

• The pilot reduces only the thrust and the aircraft pitches, because a reduction
of the thrust produces a pitch down moment. To compensate this downward
movement, the pilot gives a small pitch up command.

The rule base of the fuzzy pilot has to be designed taking the above mentioned
aspects into account. To define additional necessary rules an iterative process has
to be included into the design process. The development of the fuzzy pilot starts
with only one rule and the other rules are defined one after the other. If a situation
during the ITT occurs where the fuzzy pilot has no rule, the algorithm aborts the
ITT and reports the current flight state. Then the new rule can be defined by
analysing the current flight state. The rules on the next page are defined with this
method.

The control behaviour of these eight rules are shown in Figure 7 on the base
of the first movement of the glide slope transmitter. This method was used to define
the whole rule base of the fuzzy pilot.

The development of the fuzzy pilot model is based on the information gained
from one pilot. This has the consequence that only the specific control characteristics
of this subject will be matched. Taking the control characteristic of other pilots into
account makes model modifications necessary. However, the main part of the rule
base can be used unmodified because most of the rules are based on flight mechanic
equations.

THE FUZZY PILOT IN COMPARISON WITH
THE HUMAN PILOT

How the fuzzy pilot performs the ITT can be seen in Figure 8. The fuzzy logic
system compensates all glide slope deviations caused by the movements of the
transmitter.

The fuzzy pilot stabilises the aircraft on the glide slope with the demanded
target speed.

TLFeBOOK

Modelling of a Human Pilot 161

Figure 7: A control result of the fuzzy pilot

 IF ∆ε IS zero ∧ ∆ ε ˙ IS zero ∧ ∆v IS zero ∧ ∆ v ˙ IS zero ∧ shifting IS no

 THEN qss IS zero ∧ PLA ˙ IS hold

 IF ∆ε IS over ∧ ∆ ε ˙ IS climb ∧ ∆v IS zero ∧ ∆ v ˙ IS sink ∧ shifting IS no

 THEN qss IS push heavily ∧ PLA ˙ IS raise

 IF ∆ε IS over ∧ ∆ ε ˙ IS climb ∧ ∆v IS zero ∧ ∆ v ˙ IS sink ∧ shifting IS no

 THEN qss IS push heavily ∧ PLA ˙ IS raise slightly

 IF ∆ε IS over ∧ ∆ ε ˙ IS climb ∧ ∆v IS zero ∧ ∆ v ˙ IS climb ∧ shifting IS no

 THEN qss IS push ∧ PLA ˙ IS raise

 IF ∆ε IS over ∧ ∆ ε ˙ IS climb slightly ∧ ∆v IS zero ∧ ∆ v ˙ IS climb ∧ shifting IS no

 THEN qss IS push ∧ PLA ˙ IS raise

 IF ∆ε IS over ∧ ∆ ε ˙ IS zero ∧ ∆v IS zero ∧ ∆ v ˙ IS climb ∧ shifting IS no

 THEN qss IS push ∧ PLA ˙ IS raise heavily

 IF ∆ε IS over ∧ ∆ ε ˙ IS descent rapidly ∧ ∆v IS zero ∧ ∆ v ˙ IS climb ∧ shifting IS no

 THEN qss IS null ∧ PLA ˙ IS hold

 IF ∆ε IS over ∧ ∆ ε ˙ IS descent ∧ ∆v IS zero ∧ ∆ v • IS climb ∧ shifting IS no

 THEN qss IS null ∧ PLA ˙ IS hold

0 020 2040 4060 60100 100time in sectime in sec

side stick command in %/100

glide slope in degree difference speed in m/sec

thrust command in degree

figure_7.eps

0.00

0.00 66

68

70

72

74

76

0.08

0.16

0.24

0.32

0.40

0.40

0.80

0.12

0.16

0.20

0.00

-0.40

0.10

0.15

0.05

0.20

0.25

TLFeBOOK

162 Gestwa and Bauschat

Figure 8: Control policy of the fuzzy pilot by the ITT

It was further investigated in this project, if a fuzzy logic control approach is a
suitable method to model the human control behaviour. An assessment of the
control behaviour of the fuzzy pilot makes a comparison with the control behaviour
of the human pilot necessary. The human control behaviour is additionally influenced
by different environmental aspects (see Bubb, 1992). It is not possible to take all
these aspects into account in this chapter, so the comparison is based here on pilot’s
control strategy.

Comparison of the Glide Slope Compensation Strategy
Example glide slope deviations of the pilot and the fuzzy pilot are compared.

For this purpose the deviation of the pilot and the fuzzy pilot during the ITT will be
plotted in one diagram. Figure 9 shows that the curves of the glide slope deviations
are quite similar.

During the 2nd, 4th and 5th transmitter movements, the two curves are
matching acceptably. On the basis of the mean value and the standard deviation of
the glide slope deviation, it can be assessed how the pilot and the fuzzy pilot
maintain the glide slope. Table 5 shows that all mean values can be found in the
proximity of the ideal mean value zero and all standard deviations are in an
acceptable range.

0 100 200 300 400 500time in sec

glide slop in degree

difference speed in m/sec

thrust command in degree

side stick command in %/100

figure_8.eps

-0.30

-0.6

-2

66

72

78

84

90

96

0

2

4

0.6

0.3

0.0

-0.3

0.30

-0.15

0.15

0.0

TLFeBOOK

Modelling of a Human Pilot 163

Comparison of the Side Stick Commands
The fuzzy pilot commands are short pulsed side stick inputs like those of the

human pilot. This can be seen clearly in Figure 10, which shows the side stick
commands of the pilot and the fuzzy pilot for the ITT. Figure 10 illustrates also that
the activity of the fuzzy pilot is similar to the human pilot. Table 6 also reflects this
result, because the mean value and the standard deviation are nearly identical.

The maximum values of the side stick commands of the fuzzy pilot are
acceptable. The commands of the human pilot can be characterized as jerky, short
inputs in contrast to the fuzzy pilot, which prefers weak, long inputs. But the result
of the commands is the same. However, at the end of the ITT, the fuzzy pilot is more
active than at the beginning. This higher activity can be described by the cone-effect
of the glide slope signal. The sensitivity of the glide slope signals increases with
decreasing distance to the glide slope transmitter.

Figure 10: Side stick command of the pilot and the fuzzy pilot

Table 5: Mean value and standard deviation of the glide slope signal ε∆

Figure 9: Glide slope deviation of the pilot and the fuzzy pilot

0 100 200 300 400 ti i

fuzzy pilot
pilot

500

li lop i fi u p

-0.3

-0.1

0.0

0.2

0.3

0.1

-0.2

0 100 ti i

fuzzy pilot
pilot

i ti o i

200 300 400 500

fi u p

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

0.0

 fuzzy pilot pilot (1. ITT) pilot (2. ITT) pilot (3. ITT)
µ 0.0099 0.00083 0.0014 0.0083
σ 0.1010 0.10600 0.0940 0.0970

σµ=0 0.0103 0.01130 0.0088 0.0095
Table 5: Mean value and standard deviation of the glide slope signal ε∆

TLFeBOOK

164 Gestwa and Bauschat

Comparison of the Control Strategy
The comparison between the human control strategy and the control strategy

of the fuzzy pilot implies, that the previously discussed measurements can be seen
as an inherent part of a control concept. This concept defines how the pilot has to
react in a situation and determines his control behaviour. During the ITT the situation
is described by means of the glide slope and the speed. The control strategy is
characterized by the side stick command and the thrust command. In the following
example one ITT section is evaluated with respect to the control strategy.

The reaction of the fuzzy pilot is very similar to the reaction of the pilot (see
Figure 11). Both react on a glide slope transmitter shifting with a stationary climb.
During the stationary climb, the pilot waits until the aircraft is near the glide slope.
Both begin to interrupt the climb so that the aircraft is stabilized on the glide slope.
Both pilots stop the climb too early. The aircraft overshoots the glide slope. In this
situation the pilot and the fuzzy pilot as well push the side stick to return on the glide
slope. In the final phase of the ITT both pilots succeed to stabilize the aircraft on the
glide slope. In this part of the experiment it can be observed that a side stick
command is coupled with a thrust command. The commands push and thrust
reduction as well as pull and thrust increase define a control unit. It is noticeable
that the pilot pushes the side stick during the climb, because the aircraft overshoots
the glide slope (see Figure 11 from 168 to 182 seconds). The fuzzy pilot has this
control behaviour, too. The flight section in Figure 11 points out that the control
strategy of both pilots during a negative, maximal movement of the glide slope
transmitter is very similar. The previously described control strategy can be
observed in every phase of the tracking task. An investigation of all opposed
reactions of the fuzzy pilot and the human pilot shows that they are based on
different flight states and so both reactions are correct. Although some differences
between the reaction of the human pilot and the fuzzy pilot exist, the control strategy
of the fuzzy pilot was correct and proper during this particular task.

FUTURE TRENDS
The important message of this investigation is that fuzzy control can be used to

model the control behaviour of a human pilot. The next aim is the adaptation of the

Table 6: Mean values and standard deviations of the side stick command

 fuzzy pilot pilot (1. ITT) pilot (2. ITT) pilot (3. ITT)
µ 0.0061 0.0068 0.0062 0.0058

2σ 0.1020 0.1410 0.1360 0.1470
2

0=µσ 0.0110 0.0200 0.0180 0.0220
Table 6: Mean values and standard deviations of the side stick command

TLFeBOOK

Modelling of a Human Pilot 165

control behaviour to individual pilots. The fuzzy pilot can be used as a pilot model
for defined flight tasks. The adaptation of the fuzzy pilot can be done using neural
networks or evolution strategy. During the adaptation process the fuzzy sets of the
fuzzy pilot have to be optimised. Before the rule base can be adapted all rules have
to be checked. It has to be found out if a rule describes a particular pilot or if it is
a general rule, which is describing the control characteristic of a typical pilot (e.g.
an altitude overshoot with constant airspeed causes the pilot to decrease the thrust).

The comparison of the control behaviour is another aspect which can be
optimised. In this project the control behaviour is compared with a simple method.
The difference between two signals can usually be computed with the least squares
method. In the case of the fuzzy pilot, this method cannot be used, because the
fuzzy pilot and the human pilot did not start their control activities exactly at the
same time. The use of the least squares method would result in an unrealistic
difference. But with respect to the comparison of the control strategy, a small time

Figure 11: Control strategy of the fuzzy pilot in comparison with the one of
the human pilot

pilot (2.ITT)
FUZZY PILOT

0.00

0.05

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

glide slope in degree

140 154 182 196 210168
time in sec

-1

0

1

2

3

4

5

6 difference speed in m/s

140 154 182 196 210168
time in sec

140 182 196 210168154

100

70

80

90

thrust command in degree

time in sec

0.6

-0.6

0.3

-0.3

0.0

140 154 182 196 210168
time in sec

side stick command in %/100

(a) measurements

(b) commands

figure_11.eps

TLFeBOOK

166 Gestwa and Bauschat

delay is not as important as the reaction. Therefore the time warp method can be
used, because it is applied to find similar time histories in database. The time warp
method makes it possible to define a fitting weighting function for an optimisation
of the fuzzy pilot.

Fuzzy clustering makes it possible to derive fuzzy rules directly out of the
cluster. For this purpose a cluster is interpreted as one rule and the accessory fuzzy
sets can be evaluated by the projection of the cluster on the axes (Höppner et al.,
1997). In the case of the modelling of a human pilot, fuzzy clustering can probably
be used to compute the fuzzy pilot directly out of the recorded flight data. Therefore
the structure of the fuzzy pilot can be used to initialise and control the clustering.
Attention should be paid to the fact that the projection of the cluster contains an
information gap. However it has to be noticed that the data points are dependent
on themselves. The data point at the time step tn is depending on the data point
tn-1, etc.

CONCLUSION
The results of the comparison of the fuzzy pilot and the human pilot show that

• The fuzzy pilot fulfils the requirements of the ITT to hold the aircraft with a fixed
target speed on the glide slope.

• The measurements and the control commands of both pilots are very similar
in magnitude and trend.

• Control behaviour of the fuzzy pilot is based on the control strategy of the
human pilot

• The fuzzy pilot has primarily the same reaction time as the human pilot.

In this work it could be proven that the developed fuzzy pilot uses the same
control strategy as the human pilot. It could also be shown that the control
commands of the fuzzy pilot indicate the same characteristics as those of the pilot.
Furthermore the fuzzy pilot has in some situation the same reaction time as the pilot
so that this aspect of the human control behaviour is also taken into account.

REFERENCES
Ashkenas, I.L., Hoh, R.H. & Teper, G.L. (1983), Analyses of shuttle orbiter

approach and landing, Journal of Guidance an Control, 6(6), 448-455.
Bauschat, J.-M. (2000). An investigation on the dependence of pilot workload and

flight simulation fidelity level, Third International Conference on Engineer-

TLFeBOOK

Modelling of a Human Pilot 167

ing Psychology and Cognitive Ergonomics - Edinburgh October 25-27,
Volume 5.

Budd, H. (1992). Menschliche Zuverlässigkeit. Landsberg/Lech: Ecomed.
Bussolari, S.R.& Lee, P.D.A. (1986). The effects of flight simulator motion on pilot

performance and simulator acceptability in transport category aircraft, Pro-
ceedings 2éme Colloque International, La Securité Arienne, 361-371.

Cooper, G.E. & Harper, R.P. (1969) The Use of Pilot Rating in the Evaluation
of Aircraft Handling Qualities, NASA TN D-5153.

Duda, H. (1997). Prediction of pilot-in-the-loop oscillations due to rate saturation,
Journal of Guidance, Navigation, and Control, 20(3).

Enders, J.H. (1989). The Human Element—The Key to Safe Civil Operations
in Adverse Weather, Advisory Group of Aerospace Research and Devel-
opment (AGARD), Conference Proceedings Number 470, K2-1 to K2-7.

Harper, R.H. (1991). The Evolution of In-Flight Simulation at Calspan. CD
DGLR-91-05, Paper 91-05-01.

Höppner, F., Klawonn, F. & Kruse, R. (1997). Fuzzy-Clusteranalyse.
Braunschweig, Wiesbaden: Vieweg-Verlag (Computational Intelligence).

Kahlert, J. & Frank, H. (1993). Fuzzy-Logik und Fuzzy-Control, Braunschweig,
Wiesbaden: Vieweg.

Kruse, R., Gebhardt, J. & Klawonn, F. (1993). Fuzzy-Systeme, Stuttgart:
Teubner.

Mamdani, E.H. (1974) Application of the fuzzy algorithms for control of a simple
dynamic plant, Proceedings of the Institution of Electrical Engineers -
Control and Science, 121(12), 1585-1588.

McRuer, D.T. (1988). Pilot Modeling, AGARD Lecture Series No. 157,
Advances in Flying Qualities.

Schänzer, G. & Krüger, J. (1995). Delayed Pilot Response in Windshear,
AGARD CP 577, 28-1 to 29-9.

Zadeh, L.A. (1964). Fuzzy sets, Information and Control, (8), 338-353.

TLFeBOOK

168 Potgieter and Bishop

Chapter X

Bayesian Agencies
in Control

Anet Potgieter and Judith Bishop
University of Pretoria, South Africa

Copyright © 2003, Idea Group Inc.

ABSTRACT
Most agent architectures implement autonomous agents that use extensive

interaction protocols and social laws to control interactions in order to ensure
that the correct behaviors result during run-time. These agents, organized
into multi-agent systems in which all agents adhere to predefined interaction
protocols, are well suited to the analysis, design and implementation of
complex systems in environments where it is possible to predict interactions
during the analysis and design phases. In these multi-agent systems, intelligence
resides in individual autonomous agents, rather than in the collective behavior
of the individual agents. These agents are commonly referred to as “next-
generation” or intelligent components, which are difficult to implement using
current component-based architectures.

In most distributed environments, such as the Internet, it is not possible
to predict interactions during analysis and design. For a complex system to
be able to adapt in such an uncertain and non-deterministic environment, we
propose the use of agencies, consisting of simple agents, which use probabilistic
reasoning to adapt to their environment. Our agents collectively implement
distributed Bayesian networks, used by the agencies to control behaviors in
response to environmental states. Each agency is responsible for one or more
behaviors, and the agencies are structured into heterarchies according to the
topology of the underlying Bayesian networks. We refer to our agents and
agencies as “Bayesian agents” and “Bayesian agencies.”

TLFeBOOK

Bayesian Agencies in Control 169

Due to the simplicity of the Bayesian agents and the minimal interaction
between them, they can be implemented as reusable components using any
current component-based architecture. We implemented prototype Bayesian
agencies using Sun’s Enterprise JavaBeans™ component architecture.

INTRODUCTION
For a system to exhibit computational intelligence, it must be able to learn from

and adapt to changes in its environment. Most distributed environments are
characterized by uncertainty and non-determinism. Bayesian networks provide the
ideal mechanism for systems inhabiting environments such as these, to learn from,
reason about and adapt to changes in their environment. Our research focuses on
the implementation of distributed Bayesian networks using simple agents organized
into agencies. These agencies are structured into heterarchies according to the
structure of the Bayesian networks that they collectively implement. Each agency
is responsible for one or more behaviors. We call these agents and agencies
“Bayesian agents” and “Bayesian agencies.”

This chapter is organized as follows: it begins by giving a background on the
underlying technologies that we use in our research. We define agents, agencies,
heterarchies, intelligence and artificial life. We further describe Bayesian networks,
Bayesian belief propagation and Bayesian learning algorithms.

Next we describe how these agencies collectively adapt to environmental
states using a simple Web personalization example. We further describe emergent
belief propagation in the Bayesian agencies and a prototype implementation thereof
using a component-based architecture.

Then we describe future research and in finally we give our conclusion.

BACKGROUND
Agents, Agencies and Heterarchies

There are two different approaches to the definition of the concepts of agents
in the research community. In the first (most popular) approach, agents are
autonomous entities as reflected in the following definition:

An agent is an encapsulated computer system situated in some environment
and capable of flexible, autonomous action in that environment in order to
meet its design objectives (Jennings, 2001).

In the second approach, which was started by Minsky (1988), simple,
unintelligent agents are organized into agencies, which in turn can be organized into

TLFeBOOK

170 Potgieter and Bishop

hierarchies or heterarchies. The intelligence lies in the behavior of the agencies and
not the individual agents. The intelligence of the agencies emerges from interactions
between the simple agents and the environment. Agencies organized into a
heterarchy can achieve more than agencies organized into a hierarchy (Minsky,
1988). We view a hierarchy as a simplified heterarchy.

Interaction is at the core of emergence and emergence causes intelligence
(Brooks, 1991). Most autonomous agents do not exhibit emergent behavior, as the
emergence is restricted by complex interaction protocols (Wooldridge, Jennings &
Kinny, 2000) and social laws that agents must follow (Zambonelli, Jennings,
Omicini & Wooldridge, 2000). Autonomous agents that do react to their environment
using emergent behavior include the Subsumption Architecture (Brooks, 1985) and
autonomous agents controlled by Behavior Networks (Maes, 1989). These agents
consist of simple (sub)agents and their behavior emerges from interactions between
the simple (sub)agents and the environment. The (sub)agents in Brooks’ Subsumption
Architecture are task-accomplishing behaviors, and Maes implemented behaviors
as simple (sub)agents organized into single autonomous agents using Behavior
Networks.

Behavior Networks consist of nodes, representing behaviors, linked together
by causal links. Each node represents the selection of a particular behavior as an
emergent property of an underlying process. The behaviors are simple (sub)agents
that activate and inhibit each other according to causal links. During execution,
activation accumulates in the nodes that represent the best actions to take, given the
current environmental states and the global goals of the autonomous agent (Maes,
1989).

Intelligence
Traditional artificial intelligence attempts to model the world, and then reason

about it using complex control strategies. The control strategies can either be
centralized or distributed. The traditional distributed control strategies are very
complex and have high communication overhead.

Brooks (1991) started a new trend in Artificial Intelligence with his key ideas
of “situatedness, embodiment, intelligence and emergence.” According to Brooks,
the world is its own best model, and it cannot be modeled successfully. An agent
must be situated in the world and must react to inputs from the world rather than
attempt to model the world internally. Situatedness can be described as the state
of being in the world. Embodiment is the method by which situatedness is achieved,
namely to be in the world and to react to inputs from the world. Intelligence and
emergence are tightly interwoven—intelligence emerges out of interactions between
behaviors and the environment.

TLFeBOOK

Bayesian Agencies in Control 171

Artificial Life
Artificial life is often described as attempting to understand high-level behavior

from low-level rules (Liekens, 2000) in systems such as ant colonies, swarms,
flocks of birds and schools of fish. In these systems, coherent behavior emerges
from the interactions between the individual organisms in order to collectively learn
from and adapt to their environments. The basic laws governing emergent behavior
in nature can be used to achieve computational intelligence. As an example, Dorigo,
Di Caro and Gambardella (1999) developed algorithms based on an ant colony for
collective optimization.

An ant colony is an example in nature of an agency consisting of simple agents.
The ants (simple agents) collectively reason about the state of their environment and
food sources using pheromone trials. Ants are capable of finding a shortest path
from a food source to the nest given a set of external constraints. The variables of
interest in their problem domain are the food sources, the nest and obstacles, linked
together by different paths between the different food sources and the nest. The
constraints are obstacles that the ants might encounter along the way. Ants “learn”
and maintain the shortest path between the nest and a food source, given certain
obstacles, by using pheromone trails. Ants deposit a certain amount of pheromone
while walking, and each ant probabilistically prefers to choose a path rich in
pheromone rather than a poorer one (Dorigo et al., 1999). Only through collective
behavior do ants achieve their global goal namely to gather food using the shortest
paths between the food sources and the nest. This is an example of collective
probabilistic reasoning found in nature.

Bayesian networks provide the ideal mechanism for collective probabilistic
reasoning in computational systems. In the next section, we will give a background
on Bayesian networks, belief propagation and learning.

Bayesian Networks
Bayesian networks provide a powerful technology for probabilistic reasoning

and statistical inference that can be used to reason in uncertain environments. These
networks are “direct representations of the world, not of reasoning processes”
(Pearl & Russel, 2000). A Bayesian network (BN) is a directed acyclic graph that
represents a set of random variables in an application domain. The nodes represent
variables of interest. The links represent informational or causal dependencies
among the variables. The dependencies are given in terms of conditional probabilities
of states that a node can have given the values of the parent nodes (Dechter, 1996;
Pearl & Russel, 2000). Each probability reflects a degree of belief rather than a
frequency of occurrence.

Dechter (1996) uses the following notation: Let X = {X1, …, Xn} be a set of
random variables. A BN is a pair (G, P) where G is a directed acyclic graph and

TLFeBOOK

172 Potgieter and Bishop

P = {Pi}. Each Pi is the conditional probability matrix associated with Xi where Pi
= {P(Xi | pa(Xi))} and where pa(Xi) represents the parents of Xi. An assignment
(X1 = x1, …, Xn = xn) can be abbreviated to x = (x1, …, xn). The BN represents
a global joint probability distribution over X having the product form

))(|(),...(
11 ∏ =

= n

i iin xpaxPxxP (1)

Figure 1 illustrates a Bayesian network based on the user-words aspect model
proposed by Popescul, Ungar, Pennock and Lawrence (2001). This network
models the relationship between users (U), the contents of browsed Web pages
characterized in terms of concepts (C) and products bought from these pages (P).

Figure 1: Bayesian network

TLFeBOOK

Bayesian Agencies in Control 173

This simple model includes three-way co-occurrence data among two users, two
products and two concepts.

The users are represented by u є U = {mathematician (m), rugby
player(r)}, the products by p є P = {book authored by Michael Jordan on
neural networks (nn), book authored by Michael Jordan on basketball (bb)}
and the concepts inferred from the Web pages the users viewed by c є C =
{statistics(st), sport(sp)}. The users (U), products (P) and concepts (C) form
observations (u, c, p), which are associated with a latent variable class (Z). This
simple model has two latent classes, z є Z = {class1(c1), class2(c2)}. In Figure
1, the conditional probability matrices are shown next to their nodes.

The example Bayesian network represents the joint distribution:

)|()|()|()(),,,(zpPzcPuzPuPpczuP = (2)

From (1) and (2) it can be seen that the global distribution is described in terms
of local distributions. Pearl and Russel (2000) refer to equation (1) as the “global
semantics” of a Bayesian network, and further describe the “local semantics,” which
asserts that each variable is independent of its nondescendants in the network given
its parents. For example, in Figure 1:

)|(),|(zcPzucP = (3)

The localized nature of Bayesian networks as well as its local semantics makes
this technology ideal for distributed implementation.

Using Bayes rule, an equivalent joint distribution for (2) is given by:

 P(u,z,c,p) = P(z)P(uz)P(cz)P(pz) (4)

The joint distribution over users, contents and products is given by:

 P(u,c,p) = Σ z
P(z)P(uz)P(cz)P(pz) (5)

In a changing environment, some variables can have values that change over
time. In dynamic Bayesian networks, multiple copies of the variables are represented,
one for each time step (Pearl & Russel, 2000).

TLFeBOOK

174 Potgieter and Bishop

Belief Propagation
Belief propagation is the process of finding the most probable explanation

(MPE) in the presence of evidence (e). Dechter (1996) defines the MPE as the
maximum assignment x in:

∏ =
= n

i iixx ,e)x| paP(xP(x)
1

)(maxmax (6)

Figure 2 illustrates the results of belief propagation in the presence of evidence.
Node C, the evidence node, is circled. The new beliefs updated during belief

propagation are indicated on nodes P, Z and U. In the presence of the evidence,
namely that a user is interested in statistical concepts, the probability that he will be
interested in a book on neural networks authored by professor Michael Jordan rises
from 0.46 to 0.62.

Belief propagation is NP-hard (Pearl & Russel, 2000; Dechter, 1996). Judea
Pearl developed a belief propagation algorithm for tree-structured Bayesian
networks (Carnegie Mellon University, 1991). This algorithm was extended to
general multi-connected networks by different researchers. Pearl and Russel

Figure 2: Belief propagation in the presence of evidence

TLFeBOOK

Bayesian Agencies in Control 175

describe three main approaches, namely cycle-cutset conditioning, join-tree
propagation (also called the tree-clustering approach) and variable elimination.
Cycle-cutset conditioning and join-tree propagation work well for sparse networks
with small cycle-cutsets or clusters (Dechter, 1996). Variable elimination is based
on non-serial dynamic programming algorithms (Dechter, 1996), which suffer from
exponential space and exponential time difficulties. Dechter combined elimination
and conditioning in order to address the problems associated with dynamic
programming.

The belief propagation algorithms for general multi-connected networks
generally have two phases of execution. In the first phase, a secondary tree is
constructed. This can for example be a “good” cycle-cutset used during conditioning
(Becker et al., 2000) or an optimal junction tree used by tree-clustering algorithms
(Jensen, Jensen & Dittmer, 1994). In the second phase, the secondary tree
structure is used for inference. Finding a “good” cycle-cutset is NP-complete
(Becker et al.) and finding an optimal junction tree is also NP-complete (Becker &
Geiger, 1996). A number of approximation algorithms for the secondary trees were
developed, as in Becker et al. and Becker and Geiger (1996).

Diez (1996) describes a local conditioning algorithm that uses the original
Bayesian network during belief propagation and detects loops using the DFS
(Depth-First Search) algorithm.

Bayesian Learning
Bayesian learning can be viewed as finding the local maxima on the likelihood

surface defined by the Bayesian network variables (Russel, Binder, Koller &
Kanazawa, 1995). Assume that the network must be trained from D, a set of data
cases D1,..., Dm generated independently from some underlying distribution. In each
data case, values are given for some subset of the variables; this subset may differ
from case to case—in other words, the data can be incomplete. Russel et al. (1995)
describe the learning task as the calculation of the parameters ω of the conditional
probability matrices that best model the data. If the assumption is made that each
setting of ω is equally likely a priori, the maximum likelihood model is appropriate.
This means that Pω (D) must be maximized. In other words, the probability assigned
by the network to the observed data when the parameters of the conditional
probability matrices are set to ω must be maximized.

Examples of learning algorithms include a local gradient-descent learning
algorithm (Russel et al.) and the EM algorithm. Popescul et al. (2001) illustrated the
EM algorithm applied to their three-way aspect model. Applied to our three-way
aspect model, these calculations will change as follows:

Let n(u,c,p) be the number of times that a user u, interested in concepts c,
bought product p. This can be calculated from n(u,c,p) = n(u,c) x n(c,p), where

TLFeBOOK

176 Potgieter and Bishop

n(u,c) is the number of times that a user u accessed Web pages containing concepts
c and n(c,p) = the number of times product p was bought by users interested in
concepts c. In the EM algorithm, a local maximum is found for the log likelihood L
of the data (Popescul et al., 2001), which is:

∑=
pcu

pcuPpcunL
,,

),,(log),,((7)

where P(u, c, p) is given by equation (5).

BAYESIAN AGENCIES
Collectively Adapting to Changes in Uncertain
Environments

Computational intelligence emerges from the interactions between agents that
collectively learn from, reason about and adapt to changing environmental states.
Most agent architectures implement autonomous agents that use extensive interaction
protocols and social laws to control interactions in order to ensure that the correct
behaviors result during runtime. These agents, organized into multi-agent systems
in which agents adhere to pre-defined interaction protocols, are well suited to the
analysis, design and implementation of complex systems in environments where
interactions can be predicted. As the intelligence resides in the individual agents,
autonomous agents are commonly referred to as “next-generation” or intelligent
components, which are difficult to implement using current component-based
architectures.

We believe that the only way to adapt to changes in uncertain environments is
through emergent behavior as in Minsky (1988), Maes (1989) and Brooks (1991).
Our work is based on Minsky’s concepts of agents, agencies and heterarchies. We
adapted Minsky’s definition of agents, agencies and heterarchies as follows: an
agency consists of a society of agents that inhabit some complex dynamic
environment, where the agents collectively sense and act in this environment so that
the agency accomplishes what its composite agents set out to accomplish by
interacting with each other. If agents in a society belong to more than one agency,
the set of “overlapping” agencies forms a heterarchy. Collective intelligence of a
heterarchy emerges through the interaction of the agents within the agencies in the
heterarchy.

Our agencies collectively implement distributed Bayesian networks in order to
control behaviors in uncertain environments. These agencies are structured into
heterarchies according to the topology of the underlying Bayesian networks

TLFeBOOK

Bayesian Agencies in Control 177

collectively implemented by them. We refer to our agents and agencies as “Bayesian
agents” and “Bayesian agencies.”

In the Behavior Networks defined by Maes (1989), each node determines the
activation of a particular behavior as an emergent property of an underlying process.
In a similar way, each Bayesian agency determines the activation of one or more
behaviors as an emergent property of belief propagation in the subtree of that
agency.

Figure 3 illustrates the use of Bayesian agencies in a simplified Web
personalization application. There are two sets of Bayesian agencies in this

Figure 3. Bayesian agencies in Web personalization

TLFeBOOK

178 Potgieter and Bishop

example, namely the clickstream and the content Bayesian agencies. The clickstream
Bayesian agencies collectively implement a dynamic Bayesian network, modeling
a two-way contents-product aspect model at each time step. The content Bayesian
agencies collectively implement a Bayesian network that models a hierarchical
concept model, representing the relationships between words extracted from Web
pages and higher-level concepts, at different levels of abstraction.

During time step t, a bag of words, BOW(t) = {w2, w4, w5}, was extracted
from the PageView(t) that a user browsed. BOW(t) was then presented to the
content Bayesian agencies that collectively reduced the dimensionality of the words
to a bag of concepts BOC(t) = {co1, co4}. Content agency 1 added concept co1
to BOC(t) and content agency 2 added co4 to BOC(t) because their beliefs
exceeded a certain threshold as a result of belief propagation. Each BOC is “filled”
through the emergent behavior of the content agencies. Clickstream agency(t) used
BOC(t) as evidence together with products purchased from PageView(t) to predict
the contents and products that might interest the user next. The behavior associated
with clickstream agency(t) is the personalization of PageView(t+1). BOW(t+1) is
extracted from the personalized PageView(t+1) viewed by the user. This process
is repeated until the session ends.

Emergent Belief Propagation Using Bayesian Agencies
Emergent belief propagation is the collective behavior of the Bayesian agents,

while collectively solving the joint probability distribution of the Bayesian network
distributed between them in response to evidence received from the environment.

Every link in the Bayesian network is managed by a Bayesian agent. These
agents are organized into agencies, where each agency is responsible for one or
more behaviors. Each Bayesian agency implements a subtree of the underlying
Bayesian network. The agencies are structured into heterarchies. For example, in
Figure 3, the clickstream agencies form a heterarchy, and the concept agencies form
a hierarchy (a simple heterarchy).

Belief propagation is localized within the Bayesian agencies. Bayesian agents
can only propagate beliefs between themselves and their direct neighbors along
links defined by the underlying subtree for that agency. These agents cooperate to
find the local MPE of the subtree of the agency it belongs to by communicating »
λ and Π messages amongst themselves as in Judea Pearl’s belief propagation
algorithm (Carnegie Mellon University, 1991). Within an agency, each agent
communicates a » λ message on each of the incoming links of its parent nodes, and
a Π message on each of the outgoing links of its child node. An agent that belongs
to more than one agency must contribute to the local MPEs of all the agencies it

TLFeBOOK

Bayesian Agencies in Control 179

belongs to in such a way that the maximum local MPE of each agency is found.
Collectively the agents in a heterarchy of agencies will maximize the global MPE of
the underlying Bayesian network.

In our current implementation the belief propagation is performed on the
original network and loops are handled using local conditioning as described by
Diez (1996).

A Component-Based Approach to Emergent Belief
Propagation in Bayesian Agencies

The simplicity of the Bayesian agents as well as the minimal interaction between
them allowed us to implement them as re-usable components using Sun’s Enterprise
JavaBeans™component architecture. In our prototype implementation, the Bayesian
agents are implemented using message beans and the links are implemented using
JMS queues. The topology of the Bayesian networks, the subtrees, the conditional
probability matrices and the beliefs are maintained in a database and administrated
by entity beans.

FUTURE RESEARCH
Future research will include the refinement of belief propagation by replacing

the DFS algorithm with the self-organization of agents to handle loops in networks.
Incremental emergent learning from evidence received from the environment will
also form a very important part of our future research. This emergent Bayesian
learning will enable the Bayesian agents to collectively “discover” or “mine”
relationships in data and to self-organize according to the evolving topology of the
Bayesian network.

CONCLUSION
We have shown how Bayesian agencies, based on artificial life principles, can

control behaviors in uncertain environments. These agencies consist of simple
agents that collectively implement distributed Bayesian networks, which the
agencies use to control behaviors in response to environmental states. With our
prototype implementation, using Sun’s Enterprise JavaBeans™component archi-
tecture, we have shown that due to the simplicity of the Bayesian agents and the
minimal interaction between them, they can be implemented as re-usable compo-
nents using any commercially available component architecture.

TLFeBOOK

180 Potgieter and Bishop

REFERENCES
Becker, A. & Geiger, A. (1996). A Sufficiently Fast Algorithm for Finding

Close to Optimal Junction Trees. Retrieved March 8, 2001, http://
www.cs.technion.ac.il/~dang/.

Becker, A. Bar-Yehuda, R. & Geiger, D. (2000). Randomized algorithms for the
loop cutset problem. Journal of Artificial Intelligence Research, 12, 219-
234. Retrieved March 7, 2001, http://www.cs.washington.edu/research/jair/
abstracts/becker00a.html.

Brooks, R. A. (1985). A Robust Layered Control System for a Mobile Robot
[MIT AI Memo 864]. Retrieved July 18, 2000, http://www.ai.mit.edu/
people/brooks/papers.html.

Brooks, R. A. (1991). Intelligence Without Reason [MIT AI Memo 1293].
Retrieved July 18, 2000, http://www.ai.mit.edu/people/brooks/papers.html.

Carnegie Mellon University. (1991). BAYES: Tree-Structured Bayesian Belief
Network. Retrieved May 5, 2001, http://www.cs.cmu.edu/~mkant/Public/
util/areas/reasonng/probabl/bayes/bayes.aug.

Dechter, R. (1996). Bucket Elimination: A Unifying Framework for Proba-
bilistic Inference [UA196]. Retrieved October 8, 2000, http://
www.ics.uci.edu/~dechter/publications/.

Diez, F. J. (1996). Local conditioning in Bayesian networks. Artificial Intelli-
gence, 87, 1-20. Retrieved January 17, 2001, http://www.dia.uned.es/
~fjdiez.

Dorigo, M., Di Caro, G. & Gambardella, L. M. (1999). Ant algorithms for discrete
optimization. Artificial Life, 5(2), 137-172. Retrieved May 5, 2001, http:/
/iridia.ulb.ac.be/~mdorigo/ACO/TSP.

Jennings, N. R. (2001). An agent-based approach for building complex software
systems. Communications of the ACM, 44(4), 35-41.

Jennings, N. R. & Wooldridge, M. (2000). Agent-Oriented Software Engineer-
ing [Handbook of Agent Technology]. Retrieved January 23, 2001, http:/
/www.elec.qmw.ac.uk/dai/pubs/#2000.

Jensen, F., Jensen, F. V. & Dittmer, S. L. (1994). From Influence Diagrams to
Junction Trees [Proceedings of the Tenth Conference on Uncertainty in
Artificial Intelligence]. Retrieved February 13, 2001, http://www.cs.auc.dk/
research/DSS/abstracts/jencen:jensen:dittmer:94.html.

Liekens, A. (2000). Artificial Life? Retrieved March 20, 2001, http://alife.org/
index.php?page=alife&context=alife.

Maes, P. (1989). How to Do the Right Thing [MIT AI Memo 1180]. Retrieved
July 18, 2000, http://agents.www.media.mit.edu/groups/agents/publications.

Minsky, M. (1988). The Society of Mind (First Touchstone ed.). New York:
Simon & Schuster Inc.

TLFeBOOK

Bayesian Agencies in Control 181

Pearl, J. & Russel, S. (2000). Bayesian Networks. Retrieved May 5, 2001, http:/
/bayes.cs.ucla.edu/csl_papers.html.

Popescul, A., Ungar, L. H., Pennock, D. M. & Lawrence, S. (2001). Probabi-
listic Models for Unified Collaborative and Content-Based Recommen-
dation in Sparse-Data Environments. Retrieved January 28, 2002, http:/
/www.cis.upenn.edu/~popescul/publications.html.

Russel, S. J., Binder, J., Koller, D. & Kanazawa, K. (1995). Local Learning in
Probabilistic Networks with Hidden Variables [Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence].
Retrieved September 19, 2000, http:/robotics.stanford.edu/~koller/papers/
apnijcai.html.

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000). The Gaia methodology for
agent-oriented analysis and design. Autonomous Agents and Multi-Agent
Systems, 3(3), 15. Retrieved December 17, 2000, http://www.ecs.soton.ac.uk/
~nrj/pubs.html#1998.

Zambonelli, F., Jennings, N. R., Omicini, A. & Wooldridge, M. (2000). Agent-
Oriented Software Engineering for Internet Applications [Coordination
of Internet Agents]. Retrieved January 23, 2001, http://www.csc.liv.ac.uk/
~mjw/pubs/.

TLFeBOOK

182 Potgieter and Bishop

SECTION IV:

MACHINE
LEARNING,

EVOLUTIONARY
OPTIMISATION

AND
INFORMATION

RETRIEVAL

TLFeBOOK

Simulation Model 183

Chapter XI

Simulation Model for the
Control of Olive Fly

Bactrocera Oleae Using
Artificial Life Technique

Hongfei Gong and Agostinho Claudio da Rosa
LaSEEB-ISR, Portugal

Copyright © 2003, Idea Group Inc.

ABSTRACT
 In this chapter we present a novel method for modelling of the development
of olive fly—Bactrocera oleae (Gmelin)—based on artificial life technique.
The fly’s artificial life model consists of a set of distinct agents, each
representing one phase in the insect’s lifecycle. Each agent is defined mainly
by two internal state variables: health and development. Simulation results
have provided development times and mortality rates that closely resemble
those observations in biological experiment. The model presented has proven
to offer good results in replicating the insect’s behaviour under monitored
climatic conditions. The model’s potential uses are discussed.

INTRODUCTION
Pest management and control, as it is readily understood, are vital to a

sustained agricultural production since, without it, long-term reliable income cannot

TLFeBOOK

184 Gong and Rosa

be ensured. Nowadays chemical protection is the most widely used method for pest
control. However, control methods relying on the use of chemical products pose
a health risk for man and animals, unnecessary treatments increase production
costs, cause more environmental pollution and can lead to the development of
resistance to pesticide. Therefore, it becomes more and more important and
necessary to know or estimate the state of pest population, because if the control
action is applied at the correct moment, a reduced number of pesticide treatments
can achieve the same level of pest control.

Olive growing is an important activity for the economic, social and ecological
well-being of the Mediterranean region. It represents a relatively cheap source of
high quality vegetable fat, and its importance spans the areas of agriculture and food
industry. In Portugal this crop represents a significant proportion of the total
agricultural production. The olive fly, Bactrocera oleae, is generally considered the
most damaging of the insect pests that attack the olive trees. Its attacks may
potentially account for 50-60% of the total insect pest damage, causing a reduction
in the number and/or size of the fruits, with a subsequent reduction in yield and
quality of the fruit and oil (Michelakis, 1986; Bento, 1999).

Simulation models have been introduced as a way to assess its current state
of pest population and estimate the risk based on climatic data, especially in some
cases, the ideal timing for treating a crop is a certain stage of the infestation’s lifecycle
that is not easily detectable in the field. The quality of a decision support tool
concerning the timing and kind of crop-protection actions are highly dependent on
the effectiveness of the simulation model used to assess and forecast the development
of crop pests.

BACKGROUND
Traditional mathematical and statistical population dynamics analysis methods

may satisfactorily reproduce the observed behavior. Most of these models aim at
describing the evolution of the parasite population as a whole, using statistical
interpolation or differential equations methods, in order to find a set of equations and
parameters that correctly fit the available test data. The main problems of this
approach are the lack of biological significance of the resulting systems and the
difficulty in testing the resulting models, requiring extensive periods of climatic and
biological data to increase the confidence in the system. Most of the time, it always
fails to establish a correspondence between its low-level causes and the macroscopic
parameters involved in the model (Pitzalis, 1984; Crovetti, 1982; Dicola &
Crovetti, 1984).

Furthermore, using a single simulation model as the sole indicator for crop
control decision should be avoided; combination of both traditional assessment

TLFeBOOK

Simulation Model 185

methods and other models will increase the necessary confidence level of the
decisions to be made. In addition, the interaction between the different players may
only be captured by complex and non-linear models that are difficult to manipulate,
integrate or optimize.

In recent years, availability of affordable computational power has allowed the
appearance of new approaches to ecological system analysis. One such approach
is artificial life. Ecological systems, by nature, are composed by a set of interdependent
entities, namely living and non-living beings. A typical artificial life approach to
studying such systems consists of creating artificial beings, or agents, that resemble
as closely as possible the real beings that live in the natural ecological system. Also,
lower-level entities are modeled explicitly and interact freely with each other
(Langton, 1992; Noble, 1997) Whole population behavior emerges as a result of
the free interaction of the agents in the artificial environment. For a good reference
on emergence of order in complex systems, see the work of Stuart Kauffman
(1993), which gives a rich and compelling picture of the principle of self-
organization and selection in evolution.

An artificial life modeling approach addresses the problem by focusing efforts
in individual agent modeling, incorporating information on each of the system’s
constituents and the laws through which they interact. The modeling are bottom-up
explicit simulations of basic players of the target ecosystem, like plants, fungus,
insects or animals, left to evolve in an artificial environment fed with climatic and
biological data. Artificial life modeling of different biological systems has been
described in recent years, such as with flocks of bird (Craig , 1992), schools of fish
(Craig, 1992; Terzoupolos, 1996), basic cells (Carnahan, 1997), and forests
(Lange, 1998; Wilber & Shapiro, 1997), with success. These examples are based
on cellular automata (von Neumann, 1966), proven to be a very powerful concept
for the simulation of local interaction.

As for the application to pest control, an epidemiological model for the asexual
phase of grapevine Downy Mildew, Plasmopara viticola, has been developed
using artificial life technique. Downy Mildew is one of the most destructive diseases
of grapevines occurring in most grape-growing areas of the world, with the
reduction in yield and the quality of the fruit and wine.

The model simulates the evolution of a population of artificial fungi in artificial
environment vineyard conditions (Costa & Rosa, 1997). Detection of primary
infections is one of the most important goals of an effective control of Downy
Mildew by fungicides. The initial peak observed in the artificial germinated oospore
curve (oospore_gm in Figure 1) by the end of April indicates the possibility of
primary infection occurrence once favorable climatic conditions are present.
Fungicide application before this time would be premature, useless and potentially
harmful for auxiliary fauna.

TLFeBOOK

186 Gong and Rosa

Figure 2: Artificial mycelia
Mycelia

01-Apr 01-May 01-Jun 01-Jul 01-Aug 01-Sep 01-Oct

Figure 1: Artificial oospores population
Oospores

01-Apr 01-May 01-Jun 01-Jul 01-Aug 01-Sep 01-Oct

oospore_g

oospore_gm

As shown in Figure 2, primary infections, shown by the appearance of artificial
mycelia, actually occurred shortly after the germination of the first artificial oospore,
due to favorable climatic conditions (temperature above 10ºC and rainfall above
10mm). In reality the mycelia will develop inside of the leaf tissue, which is not easy
to detect. The visible lesions will only appear due to the destruction of the cellular
leaf tissue and the germination of oospore; when this happens, the fungicide
treatment can only limit the damage.

MAIN THRUST OF THE CHAPTER
The Olive Fly’s Lifecycle

The olive fly’s lifecycle is composed of four distinct phases: egg, larva, pupa
and adult (Figure 3). The first three phases are called pre-imaginary phases. The first
two phases must develop inside the olive fruit. Also, it is important to consider that
the pupal phase is the one that better resists low temperature values in all pre-
imaginary phases.

TLFeBOOK

Simulation Model 187

Adult insects must be considered separately, depending on their sex. Female
adults pass through three stages: pre-oviposition, oviposition and post-oviposition.
Male adults pass through a premature stage before reaching sexual maturity.

Heat Unit Accumulation Concept
The heat unit accumulation concept, also referred to as the degree-day

method, is widely used in agronomy to express the relationship between temperature
values submitted to a plant and its development time. And it is applicable to insects.

At a constant temperature, the degree-days is formulated as: Do =T (y-c); the
insect needs to accumulate certain degree days to evolve into the next phase. When
the degree-days reach Thermal Constant K, Do is the physiological time (degree-
days) required to complete development of a stage, T is the number of days required

Figure 3: Olive fly’s lifecycle

Figure 4: Illustration of the degree-days under a) constant temperatures;
b) variable temperatures

Do =10(20-10)=100
Do =20(15-10)=100

D°=)(

1
tD

T

t
∆∑

=

=100

TLFeBOOK

188 Gong and Rosa

to complete development at temperature y, and c is the threshold temperature,
below which no development occurs. In other words, degree-days is the product
of time and the temperature degree above the threshold temperature. The
computation for degree-days under constant temperature is illustrated in Figure 4.a.

The theory is easily extended to fluctuating temperature as indicated in Figure
4.b, which shows curve of daily temperature and the daily integral of ∆D(t) above
C. The method to compute degree-day is to integrate the area under the curve
above C, which is formulated as:

D° =)(
1

tD
T

t
∆∑

=

As a poikilothermic animal, lacking an efficient body temperature control
mechanism, the insect would be expected to complete its development when the
sum of D° reach its thermal constant. This is the simplest and most widely used
method for predicting the physiological age and time for populations of poikilothermic
organisms.

Table 1 shows each phase’s thermal constant of olive fly is expressed in Do,
which stands for degree-days. In order to evolve into the next phase, the insect
needs to accumulate the amount of energy during its development (Crovetti, 1982).

Description of the Model

Table 1 Egg to Adult Egg Larva Pupa

Thermal Constant (Do) 375.03 48.66 125.3 201.7

Table 1: The thermal constant for the olive fly’s phases

The fly’s artificial life model consists of a set of distinct agents, each representing
one phase in the insect’s lifecycle. In order to represent the insect throughout its
lifecycle, seven different agents must be created, each replicating the corresponding
phase’s behaviour: egg, larva, pupa, male adult, female adult in the pre-oviposition,
oviposition and post-oviposition periods.

Oviposition of a new egg in reality will correspond to the creation of a new egg
agent. An insect’s transition from one phase to another corresponds to the creation
of a new agent depicting the insect in the following phase and the destruction of the
agent that represented the insect in the completed phase.

At a certain instant, each agent is defined by its two internal state variables:
Health (H) and Development (D). These state variables bear a concrete

TLFeBOOK

Simulation Model 189

correspondence to the insect’s condition: H encapsulates the insect’s general
physical condition, and D represents its accumulated energy, using the degree-day
concept above mentioned.

On agent creation, the H variable starts with an optimum health value. If by any
reason it reaches zero, then the artificial insect dies. The artificial insect’s D variable
starts with a zero value at the beginning of a certain phase, and will rise until it reaches
the phase’s thermal constant. At that moment, the insect will have accumulated
enough energy to pass unto the next phase of its cycle. The agent that represented
the insect in the passed phase will be erased and a new one created, representing
the insect in the following phase, with convenient initial H value and zero D value,
meaning that it has not yet accumulated any energy.

State changing rules are explained if one follows the steps taken in one iteration.
Each agent of the artificial insect will be left to evolve in a series of consecutive
iterations, which is a certain time period that provides new, different temperature
and relative humidity values. Figure 5 depicts the main steps taken in one iteration.

Firstly, the set of (Temperature, Relative Humidity) = (T, RH) values for the
present iteration will be evaluated through a function Damage, a R2 → R function
that establishes a correspondence between temperature and relative humidity
values and the amount of damage, which will affect the artificial insect’s H counter
(Step 1) on each phase. The Damage function was synthesized from consideration
and experimental data of the available literature. The approximate shape of the

Figure 5: Iteration scheme

TLFeBOOK

190 Gong and Rosa

Figure 6: Function Damage (T, RH)

Hint An intermediate H value to evaluate whether or
not the insect has sustained lethal damage and
dies

Available_Energy Energy available to insect at that iteration;
Energy is measured in degree-days

Distribute_Energy Function will calculate the fraction of
Available_Energy used in health restoration

En_F_H_inc Energy fraction used in Health increment
En_H_inc Amount of Energy used in Health restoration
En_D_inc The remaining Energy used in Development
Conv(En_H_inc) Energy to Health conversion function
H_inc Health increment from the Energy

Table 2: Description of the variables in the model

function presents in Figure 6. It is visible that lower damage regions in the (T, RH)
plane correspond to optimum climatic conditions, and higher damage correspond
to extreme climatic conditions.

One calculates, thus, an intermediate H value, Hint (Step 1a). It is at this
moment that the Hint is checked to evaluate whether or not the insect has sustained
lethal damage and dies.

Hint = H - Damage (T, RH)

The following step is to calculate the energy available to the insect at that
iteration (Step 2). Energy is measured in heat units, namely degree-days.

pS
TEnergyAvailable =_

TLFeBOOK

Simulation Model 191

 Note that the temperature value T is used as a mean temperature value for the
time represented by one iteration, and that it has not been subtracted from the zero
development temperature value, c, as in the calculation of the above mentioned
modified average temperature. This means that the artificial insect will still receive
some small amount of energy even if temperatures fall below c. Null development
rates observed at those temperatures will be achieved by the simultaneous effects
of high damage values and small available energy.

It is logical that upon being damaged, the insect will react by trying to repair
the inflicted damage, consuming some of the available energy. How much energy
is used in heath restoration, that is, in increasing the H variable value, is decided by
calculating the value of Distribute_Energy function, also a R2→R function that has
input variable (Hint, T), shown in Figure 7. This function will calculate the fraction
of Available Energy that will be used to restore health. (Step 3):

En_F_H_inc = Distribute_Energy (Hint, T)

The following expression, En_H_inc, determines the amount of Energy used
in Health increment (Step 4):

En_H_inc = En_F_H_inc×Available_Energy

The remaining energy, En_D_inc, will be used in development (Step 5),
increasing D value:

 En_D_inc = Available_Energy – En_H_inc

Figure 7: Distribute_Energy (Hint, T)

Where T is the iteration’s temperature value and Sampling period Sp=24/the
real time span for one iteration.

TLFeBOOK

192 Gong and Rosa

Figure 8: Internal state variables during simulation

The next step will be to determine the intermediate health increment, H_inc,
correspondent to the amount of energy used in health restoration, En_H_inc (Step
6). That is the role of Conv, energy to health conversion function:

H_inc = Conv(En_H_inc)
From a biological point of view, it isn’t reasonable to assume possible too large

health increments. It is, thus, necessary to limit H_inc to a certain maximum value,
as a function of both Hint and D values, as different health recuperation efficiencies
exist at different health and development values (Step 7).

En_D_inc will directly be used in raising D value, after it has passed through
a limiting function, analogous in purpose to the one used in limiting H_inc (Step 8).

Finally, D value is inspected and compared to the phase’s thermal constant,
which has been shown in Table 1. If D is greater than it, then the insect will have
completed its development and pass unto the next phase.

To achieve the different environmental influence, every time that Damage
function is evaluated (Step 1), a random value following a zero mean normal
distribution is added to the obtained value.

CONCLUSION
In this simulation, the iteration’s time was 2 hours, namely the model will be fed

by new temperature and relative humidity values every 2 hours. A typical behaviour
of an artificial insect’s internal state variables, health and development, is presented
in Figure 8, during a simulation.

In order to compare the simulation results with available experimental data, the
development for N artificial insects was simulated in the same time, which implied
an initial insect population size N; the average of each artificial insect’s develop time
and sum of dead insect were counted at the end of simulation. Mortality rates were
obtained from the dead fraction of the initial population at the end.

In Table 3 we present the obtained results for pupa’s development in
population size 100, with variable constant temperature and relative humidity of

TLFeBOOK

Simulation Model 193

75%(±10%), comparable to those experimental data from Crovetti (1982). The
root mean square error of Development Time and Mortality Rate are 0.85 and
2.70%.

In order to apply the model to the olive protection in Portugal, manual
parameter tuning is performed on the Damage and Distribute_Energy functions,
with slightly decreases for the Damage under relative humidity of 75% and

Table 3: Simulation results for pupa’s development in population size 100

Table 3 Development Time (Days) Mortality Rate (%)

Constant
Temperature

(Celsius)

Observation
from

 Crovetti (82a)

Simulation
Results

Observation
from

 Crovetti (82a)

Simulation
Results

10 89.6 87.89 70.2 71
13 54.8 53.62 46.4 42
15 39.3 38.43 22.6 21
16 30.4 28.88 19.2 20
17 27.9 27.33 7.9 8
18 25.9 24.95 6.3 6
21 17.5 16.45 3.2 3
22 14.8 14.70 16 14
23 14.7 13.71 18.3 17
25 11.8 11.31 21.2 21
26 10.5 10.82 35.6 31
27 10.9 10.28 39.8 37
28 10.6 10.47 64.5 61
29 10.1 10.10 46.2 53
30 9.97 9.72 85.4 86
31 9.24 9.29 96.2 96

Table 4 Development Time (Days) Mortality Rate (%)
Constant

Temperature
(Celsius)

Observation
from

Portugal

Simulation
Results

Observation
from

Portugal

Simulati
on

Results

10 89.62 90.01 20 19
13 57 57.08 12 13
15 38.9 39.51 10 10
16 29.8 30.16 10 10
17 27.8 28.34 10 10
18 25 25.41 5 6
21 17.5 17.66 0 0
22 14.7 14.66 0 0
23 14.4 14.33 0 0
25 11.85 11.83 0 0
26 11.85 11.58 0 0
27 10.9 10.91 10 11
28 10.6 10.33 20 21
29 10.25 10.02 30 31
30 9.93 9.66 38 38
31 9.45 9.41 45 47
35 - 8.33 - 52

Table 4: Simulation results for pupa’s development for olive fly subspecies at
north of Portugal

TLFeBOOK

194 Gong and Rosa

Figure 9: Illustration for the simulation of the insect population dynamics

increases for the Distribute_Energy. The simulation results also fit the observation
data very well. In Table 4, the simulation results in population size 100 closely
resemble those data observed in lab experiment, which is from an olive fly
subspecies at the north of Portugal. The root mean square error of Development
Time and Mortality Rate are 0.298 and 0.791%.

The model was also fed by real monitored climatic data of 1993 from north of
Portugal with variable temperature and relative humidity. Simulation results have
provided development times and mortality rates. The simulation results resemble
the data trends of adults capture by yellow panel traps.

Availability of weather forecast up to several days allows the prediction of the
pest development. This information is a very important component for the risk
evaluation and treatment decision processes in terms of economical and environmental
costs.

The knowledge of the pesticide and control method action curves enables the
precise time positioning of the treatment in order to achieve maximum efficacy.

FUTURE TRENDS
The model has shown its potential for further research on insect population

dynamics. The improvement of the insect’s agent definition will use a distributed
starting value of Health and an initial population where the insect’s age is normally
distributed.

Furthermore, the simulated artificial agents evolving in the olive tree, olive fruit
and micro-environmental changes due to the olive’s state will also be considered.

TLFeBOOK

Simulation Model 195

For example, the existence of the food providing the necessary nutrients will be
simulated; the oviposition should also consider the picking time and the residuum
of the fruit, and so on.

In this approach, the large number of parameters must be tuned manually. The
proposed solution is to use evolutionary algorithms, possibly genetic algorithms, in
distributed configurations, to search for good combinations of parameters, obviously
restricted to biologically plausible values (Goldberg, 1989). Each agent of the
artificial insect will be defined and coded by “chromosome.”

As an added benefit, the same technique can be used to adapt the model to
other regions not initially considered. With an automatic parameter adjustment using
genetic algorithms, the model would account for regional differences in insect
species, that is, the existence of subspecies of insects that behave somewhat
differently one from another. Subspecies, with different reactions to environmental
variables or different sensitivity to control, will be represented in the difference of
internal artificial agents.

As every model should always be subject to a rigorous validation phase, the
simulation results of population development should then be compared with those
data obtained in field experiments, such as the trapped insects number, the data of
field sampling investigation, etc., thus improve its accuracy and confirm the validity
of the model.

The output of the model will integrate with a control measure to help protection
decision making. With this decision support tool, the farmers and pest control
advisors can select a given climatic data range from the climatic database, or with
the weather prediction, then execute the simulation; it can help the user pinpoint an
adequate program for olive fly control, minimizing the damage, economic loss and
the pollution of pesticide.

ACKNOWLEDGMENT
Research work supported by a grant SFRH/BD/4936/2001 from the National

Foundation of Science and Technology.

REFERENCES
Bento, A. (1999). A contribution to the knowledge of Bactrocera oleae in Tras-

os-Montes region (Northeastern Portugal)—phenology, losses and control,
Acta Horticulturae, (474), 541-544.

Carnahan et al. (1997). Computer simulation of Dispersal by Anopheles Gambiae
in West Africa. Artificial Life V. MIT Press, 387-394.

TLFeBOOK

196 Gong and Rosa

Costa, J. & Rosa, A. (1998). Artificial life modelling of Downy Mildew of the
grapevine. Journal of Zhejiang Agricultural University, 24(5), 509-516.

Craig W. R. (1992). An evolved, vision-based model of obstacle avoidance
behavior. Artificial Life III. 327-346.

Craig, W. R. Homepage of Boids, http://www.red3d.com/cwr/boids/.
Crovetti, A., Quaglia, F. & Rossi, E. (1982). The heat-units accumulation method

for forecasting the Dacus Oleae (Gmel.) lifecycle: Results of a study carried
out in a biotope of the Southern Tuscany during the years 1980-1982,
Frustula Entomologica, nuova serie X, 109-117.

Dicola, G. & Crovetti, A. (1984). Numerical simulation of the population devel-
opment in Dacus oleae (Gmelin). Integrated Pest Controls in Olive-
Groves, 128-135.

Goldberg, D. (1989). GeneticAalgorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley Publisher.

Lange et al. (1997). Investigating forest growth model results on evolutionary time
scales. Artificial Life VI, MIT Press, 418-420.

Langton, C. G. (1992). Introduction, Artificial Life II, 3-23.
Michelakis. (1986). Bio-ecological data of the olive fly (Dacus Oleae Gmel.) in

Crete-Greece. Proceedings of 2nd International Symposium Fruit Flies,
397-406.

Noble, J. (1997). The scientific status of artificial life, European Conference on
Artificial Life.

Pitzalis, M. (1984). Bioclimatology and insect development forecast: Degree-days
and phenophases of Dacus Oleae (Gmel.). Integrated Pest Control in
Olive-Groves, Proceedings of the CEC/FAO/IOBC International Joint
Meeting. Pisa April 3-6, 1984, 84-93.

Stuart Kauffman, (1993). The Origins of Order: Self-Organization and Selec-
tion in Evolution. Oxford University Press.

Terzoupolos et al, (1996), Artificial fishes with autonomous locomotion, percep-
tion, behavior, and learning in a simulated physical world. Artificial Life IV.
MIT Press, 17-27.

Von Neumann, J. & Arthur, W. B. (1966). Theory of Self-Reproducing
Automata. University of Illinois Press

Wilber, P. & Shapiro, H. (1997). An artificial life approach to host-parasite
interactions. Ecological Modelling, 101(1), 113-122.

TLFeBOOK

Applications of Data-Driven Modelling 197

Chapter XII

Applications of Data-Driven
Modelling and Machine

Learning in Control of Water
Resources

D.P. Solomatine
International Institute for Infrastructural, Hydraulic and Environmental Engineering

(IHE-Delft), The Netherlands

Copyright © 2003, Idea Group Inc.

ABSTRACT
Traditionally, management and control of water resources is based on
behavior-driven or physically based models based on equations describing
the behavior of water bodies. Since recently models built on the basis of large
amounts of collected data are gaining popularity. This modelling approach
we will call data-driven modelling; it borrows methods from various areas
related to computational intelligence—machine learning, data mining, soft
computing, etc. The chapter gives an overview of successful applications of
several data-driven techniques in the problems of water resources management
and control. The list of such applications includes: using decision trees in
classifying flood conditions and water levels in the coastal zone depending on
the hydrometeorological data, using artificial neural networks (ANN) and
fuzzy rule-based systems for building controllers for real-time control of
water resources, using ANNs and M5 model trees in flood control, using chaos
theory in predicting water levels for ship guidance, etc. Conclusions are
drawn on the applicability of the mentioned methods and the future role of
computational intelligence in modelling and control of water resources.

TLFeBOOK

198 Solomatine

INTRODUCTION
A model can be defined as a simplified representation of reality with an

objective of its explanation or prediction. In engineering, the term model is used
traditionally in one of two senses:
(a) a mathematical model based on the description of behaviour (often physics,

or first-order principles) of a phenomenon or system under study, referred to
later as behavioural (also process, or physically based) models;

(b) a model built of material components or objects, which is often referred to as
scale (or physical) model (since it is usually smaller than the real system).
These views of a model are widely adopted and taught. Understandingly, in

social and economical studies, scale modelling would be a difficult undertaking, but
behavioural models based on mathematical descriptions of processes are widely
spread and used.

Traditionally, management and control of water resources was based on good
understanding of the underlying processes and use so-called “physically based” (or
“knowledge-driven,” behavioral) models. These could be for example models
based on Navier-Stokes' equation describing behavior of water in particular
circumstances. Examples are surface (river) water 1D models, coastal 2D models,
groundwater models, etc. Equations are solved using finite-difference, finite-
element or other schemes, and results—normally water levels, discharges—are
presented to decision makers. Often such models are called simulation models.
Knowledge-driven models can be also “social,” “economic,” etc.

On the contrary, a “data-driven” model of a system is defined as a model
connecting the system state variables (input, internal and output variables) with only
a limited knowledge of the details about the “physical” behavior of the system.
“Hybrid models” combine both types of models.

It should be stated that the process of modelling includes studying the system,
posing the problem, data preparation, building the model (normally a machine
learning model), testing the model, using the model , interpreting the results and,
possibly, reiterating. In this chapter we will consider only the techniques for data-
driven modelling proper.

Techniques used in data-driven modelling originate in various areas (often
overlapping):
• machine learning (decision trees, Bayesian and instance-based methods,

neural networks, reinforcement learning);
• soft computing, and in particular fuzzy rule-base systems induced from data;
• data mining (uses methods of machine learning and statistics);
• methods of non-linear dynamics and chaos theory (often considered as part

of time series analysis, but which are actually oriented towards the analysis of
large data sets).

TLFeBOOK

Applications of Data-Driven Modelling 199

In this chapter the main techniques used for data-driven modelling will be
mentioned, and an overview of their use in the problems of water resources
management and control will be given.

MACHINE LEARNING AS THE BASIS
OF DATA-DRIVEN MODELLING

Machine learning is the main source of methods for the data-driven modelling
problem (Figure 1). A machine learning method is an algorithm that estimates
hitherto unknown mapping (or dependency) between a system’s inputs and its
outputs from the available data (Mitchell, 1998). By data we understand the known
samples that are combinations of inputs and corresponding outputs. As such a
dependency is discovered, it can be used to predict (or effectively deduce) the
future system’s outputs from the known input values.

There are four main styles of learning considered:
• Classification—On the basis of classified examples, a way of classifying

unseen examples is to be found.
• Association—Association between features (which combinations of values

are most frequent) is to be identified.
• Clustering—Groups of objects (examples) that are “close” are to be identified.
• Numeric prediction—Outcome is not a class, but a numeric (real) value.

Often it is called regression.

The oldest area of estimating dependencies from data is statistics, as represented
by multivariate regression and classification. In the 60s and 70s, new techniques
which were often not based on the assumptions of “well-behaved” statistical
distributions of random processes started to emerge, and these were used in many
successful applications. Among these techniques were: pattern recognition and
cluster analysis, methods trying to imitate the human brain and perception, like

Figure 1: Learning in data-driven modelling

Input dataInput data
M odelledM odelled
(real)(real)
systemsystem

XX

Actual (observed)Actual (observed)
output Youtput Y

Data-drivenData-driven
m odelm odel

Predicted output Y’Predicted output Y’

Learning is aimedLearning is aimed
at minimizing this at minimizing this

differencedifference

Input data
Modelled

(real)
system

Data-
driven
model

Actual (observed)
output Y

Learning is aimed
at minimizing this

difference

Predicted output Y'

TLFeBOOK

200 Solomatine

neural networks and fuzzy systems (Tsoukalas & Uhrig, 1997), genetic programming
(Koza, 1992), decision trees (Quinlan, 1992), and reinforcement learning (Watkins
& Dayan, 1992).

In statistics the following four types of data are considered: nominal, ordinal,
interval and ratio (real-valued). In machine learning, for simplicity, we often speak
only of two data types: nominal (classes) and real-valued. We will divide the
applications with respect to the main data types involved—nominal or real-valued.

PROBLEMS DESCRIBED BY NOMINAL DATA
Classification is treated often as finding classes of data points {ai} ∈ Rn.

Classes must be such that points in a class are close to each other in some sense,
and classes are far from each other. Clustering is finding groups (subsets) of data
without assigning them to particular classes.

Among the most important methods currently used, the following can be
mentioned:
• partition-based clustering (K-means, fuzzy C-means, based on Euclidean

distance);
• density-based spatial clustering DBScan (for clusters of arbitrary shapes);
• SOF maps (Kohonen neural networks) clustering;
• Bayesian classification;
• decision trees classification (Quinlan, 1992; Witten & Frank, 2000);
• support vector machines (SVM) classification.

Research into extending statistically based induction principles resulted in the
increased interest to classification methods such as Bayesian learning. Another
important development in this area is statistical learning theory (Vapnik, 1998).

Statistical Learning Theory (Support Vector Machines)
Statistical learning theory is associated with the research performed in the

1960-80s in the Institute for Control Problems of the Russian Academy of Sciences
in the department of Aizerman (see, for example, Aizerman et al., 1963). Later
these early results were extended and generalised to provide the subject currently
known as statistical learning theory of Vapnik (1998) which serves as a basis of
support vector machine (SVM) technique. Vapnik’s theory is based on solid
principles and allows for generalising and the finding of common elements among
various machine learning techniques.

Statistical learning theory made an important step: instead of trying to choose
the approximating function based on how well it reproduces the training set
(minimizing the empirical risk), it chooses the function that reproduces well also the

TLFeBOOK

Applications of Data-Driven Modelling 201

verification set (thus minimizing the structural risk). On the basis of statistical
learning theory, a method of building the discriminating surfaces based on the so-
called support vector machines (SVM) was developed. This theory and the
SVM methods show the superior qualities in complex classification problems.

Decision Trees
A decision tree is quite a simple tool (however effective) representing a step-

wise decision-making process about assigning an instance to a predetermined class.
In this tree-like structure, the nodes contain the conditions on the attributes’ values,
and the leaves—the classes. The choice of an attribute on which partitioning is
performed is based on the maximum information gain (the expected reduction in
entropy caused by partitioning the examples according to this attribute).

Decision trees classify instances by sorting them down the trees from the root
to some leaf node that provides the classification of the instance. Each node in the
trees specifies a test of some attribute of the instance, and each branch descending
from node corresponds to one of the possible values for this attribute. An instance
is classified by starting at the root node of the trees, testing the attribute specified
by this node, then moving down the tree’s branch corresponding to the value of the
attribute in the given example. This process is then repeated for the subtree rooted
at the new node.

Classification and clustering plays an important role in pattern recognition, that
is identification of a class to which a new data point (pattern) could be attributed.
One of the popular applications of classification is classifying a customer to a
particular class of consumer behavior, or a company described by a number of
parameters can be classified to classes like “very safe,” “safe,” “unsafe,” “unknown.”

Practical Applications
A number of examples of using classification and clustering in water management

and control were reported:
• Hall et al. (2000) used SOFM for classifying catchments into groups based on

their 12 characterisitics, and then applying ANN to model the regional flood
frequency.

• Hannah et al. (2000) used clustering for finding groups of hydrographs on the
basis of their shape and magnitude; clusters are then used for classification by
experts.

• In a similar fashion Harris et al. (2000) applied clustering to identify the classes
of river regimes.

• Frapporti et al. (1993) used the method of fuzzy c-means clustering in the
problem of classifying shallow Dutch groundwater sites into homogeneous
groups.

TLFeBOOK

202 Solomatine

• The use of fuzzy classification in the problem of soil classification on the basis
of cone penetration tests (CPTs) is addressed by Zhang et al. (1999).

Our experience of using classification methods includes the following:
• Using self-organizing feature maps (Kohonen neural networks) as clustering

methods, and SVM as classification method in aerial photos interpretation. In
this application various classification methods were used in the problem of
interpreting an aerial photo of the size of 4387x2786 pixels. Four land cover
classes were identified—wood and scrub, agriculture, meadow and urban
area (Velickov, Solomatine, Yu & Price, 2000).

• Using decision trees in classifying surge water levels in the coastal zone
depending on the hydrometeorological data (Solomatine, Velickov, Rojas &
Wust, 2000).

• Classification of the river flow levels according to their severity in the problem
of flood control (the constructed decision tree is given above).

Classification of Flows in a Flood Management Problem
This latest example of a decision tree built for making prediction of river flow

class (low, medium or high flow) is given below. The data of a catchment in Southern
Europe included hourly data on rainfall R, evapotranspiration E and runoff R. The
problem posed was to predict the class of flow 3 hours ahead. The variables for
building a decision tree model were selected on the basis of correlation analysis (RE
stands for the effective rainfall, that is rainfall minus evapotranspiration):
• inputs: REt, REt-1, REt-2, REt-3, Qt, Qt-1
• output: class of Qt+3 (L, M or H).

The set of 1,854 examples was used for training and 300 for verification. Value
for Low flow (denoted in the tree as L) was chosen to be 50 m3/s, for Medium flow
(denoted as M)–350 m3/s and for High (H)–750 m3/s. The built tree (shown
horizontally) follows:

Decision tree in a flood control problem
Q
t
 <= 51.45

| RE
t-1
 <= 0.6686: L (815.0/10.0)

| RE
t-1
 > 0.6686

| | Q
t
 <= 25.59: L (24.0)

| | Q
t
 > 25.59: M (24.0/7.0)

Q
t
 > 51.45

| RE
t-1
 <= 2.3955

| | Q
t
 <= 59.04

| | | RE
t
 <= -0.0255

TLFeBOOK

Applications of Data-Driven Modelling 203

| | | | Q
t
 <= 52.67: L (5.0)

| | | | Q
t
 > 52.67: M (7.0/1.0)

| | | RE
t
 > -0.0255: M (63.0/4.0)

| | Q
t
 > 59.04

| | | Q
t-1
 <= 348.55: M (271.0)

| | | Q
t-1
 > 348.55

| | | | Q
t
 <= 630.2: M (7.0)

| | | | Q
t
 > 630.2: H (3.0)

| RE
t-1
 > 2.3955

| | Q
t
 <= 247.68

| | | RE
t
 <= 3.3031: M (3.0)

| | | RE
t
 > 3.3031: H (7.0/3.0)

| | Q
t
 > 247.68: H (9.0)

Number of Leaves : 12

Size of the Tree: 23

Figure 2 shows the performance of the model. The tree model is transparent
and is easily understood by decision makers.

Table 1: Performance of several classification methods in a problem of flood
control

Evaluation for Decision Decision Naïve K-Nearest
Tree Tree Bayes Neighbor

(unpruned) (pruned) (k = 3)
Train. Test. Train. Test. Train. Test. Train. Test

Incorrectly classified
instances, % 1.02 5 2.10 6.67 6.09 10.67 1.83 7.33

Classification of Q t+3 using Decision tree, pruned
(10/02/70, 04:00 to 22/02/70, 16:00)

0

100

200
300

400

500

600

700

800

0 50 100 150 200 250 300 350
t [hrs]

Observed class
Predicted class

Class of
flow

Flow [m3/s]

Low

Med.

High

Figure 2: Predicting the class of flow by decision tree in a problem of flood
control

TLFeBOOK

204 Solomatine

The problem of classification of flows was solved using several classification
methods; their performance is given in the following table.

Interpretation of Aerial Photos
Another application of clustering and classification techniques was oriented

towards interpretation of aerial photos with the help of self-organizing feature maps
(SOFM), vector quantization, SVM and C4.5 decision trees (Velickov et al.,
2000). The performance of several classifiers—vector quantization VQ (part of
SOFM approach), C4.5 decision tree algorithm and SVM—was compared on a
problem of an aerial photo interpretation; see Table 2 and Figure 3. For VQ and
SVM, the SOFM clustering was applied first. The best results were achieved with
the SVM classifier using the radial basis functions.

VQ C4.5 SVMs
radial basis simple full

function polynomial kernel polynomial kernel
3.12 2.87 0.19 0.78 0.39

Figure 3: Approximation by RBFs in one dimension

Centers: 1 2 J

Table 2: Performance of classifiers in aerial photo interpretation (% of the
misclassified examples)

TLFeBOOK

Applications of Data-Driven Modelling 205

PROBLEMS DESCRIBED BY
REAL-VALUED DATA

Most engineering problems are formulated with the view of real-valued data.
The problem of prediction of real-valued variables is also called a regression
problem. Often a choice of engineers is to apply linear methods like linear
regression and more sophisticated variation for time series, but still linear, a family
of ARIMA methods.

RBF: A Method of Combining Functions Inspired by
Function Fitting

Since machine learning aims at finding a function that would best approximate
some given function, it can be seen also as a problem of function fitting, and this
prompts for the use of the corresponding methods already available. This problem
was studied in mathematics for more than 150 years. In function fitting (Gershenfeld,
2000) an attempt is made to find functions that, being combined, would approximate
a given function (or a data set).

Traditionally, linear (as in linear regression) or polynomial functions were used.
Examples could be splines—combinations of functions that use cubic polynomials
to match the values and first and second derivatives (at the boundaries) of the
function to be approximated. Another example is orthogonal so-called orthogonal
polynomial functions, e.g., Chebyshev polynomials.

The problem of combining complex polynomial functions is that in order to
improve the fit, it is necessary to add higher-order terms, and they may diverge very
quickly (being a good approximator close to one point, and a very bad one a bit
further). Matching data requires a delicate balancing of the coefficients, resulting in
a function that is increasingly “wiggly.” Even if it passes near the training data, it will
be useless for interpolation or extrapolation. This is particularly true for functions
that have sharp peaks (which are actually so frequent in many engineering
applications).

Radial basis functions (RBFs) (quite simple in nature) could be seen as a
sensible alternative to the use of complex polynomials. Consider a function z = f(x),
where x is a vector {x1,..., xI} in I-dimensional space. The idea is approximate—
a function z = f(x) by another function F(x) in a proximity to some “representative”
locations (centers) wj , j=1,..., J (Figure 4).

The question is then how to find the position of centers wj and the “height
parameter” of the functions F(x). This can be done by building a radial-basis
function (RBF) neural network (Schalkoff, 1997); its training allows us to identify
the unknown parameters.

TLFeBOOK

206 Solomatine

MLP: A Method of Combining Functions Inspired by the
Workings of the Brain

An important step towards non-linearity in function representation was a multi-
layer perceptron (MLP), the most widely used class of artificial neural networks
(ANNs). It has been mathematically proven that adding up simple functions, as an
ANN does, allows for universal approximation of functions (Kolmogorov, 1957).
After the mid-1980s, when methods for finding these functions (training an MLP)
were found, it became the most successful machine learning method currently
known. Various types of ANNs are widely used in numerical prediction and also
in classification.

ANNs are applied in many areas, including pattern recognition, voice recognition,
cryptography, prediction of stock market trends, consumer behavior, etc. ANN
can be also used to replicate the behavior of complex models. This may be needed
when models are slow but the results of modelling are needed in real time. An
application of ANN, in approximating the behavior of a complex hydrodynamic
model (25 inputs and 1 output), is considered by Solomatine and Torres (1996);
see Figures 5 and 6. Neural network code developed for that application can be
run across the Internet (see www.ihe.nl/hi/sol). Experience shows that ANNs,
being highly non-linear models, are superior to regression and ARIMA models.

Figure 4. ANN reproducing the behaviour of one-dimensional river model
(water level), Apure river basin (Venezuela): training

TLFeBOOK

Applications of Data-Driven Modelling 207

M5 Model Tree: A Method of Combining Functions
Inspired by a Decision Tree

Decision trees can be generalised to regression trees and model trees that can
deal with continuous attributes. Trees-structured regression is built on the assumption
that the functional dependency is not constant in the whole domain, but can be
approximate as such on smaller subdomains. For the continuous variables, these
subdomains then can be searched for and characterized with some “local” model.

Depending on the nature of such a model, there are two types of trees used for

Figure 5: ANN reproducing the behaviour of one-dimensional river model
(water level), Apure river basin (Venezuela): verification

FLOW-S1: MT Verification (01/12/59, 7:00 to 13/12/59, 18:00)
Inputs: REt, REt-1 , REt-2, REt-3, REt-4, REt-5 , Qt, Qt-1, Qt-2; Pruning factor =1

Output : Qt+1

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

t [hrs]

Discharge [m3/s]

3

Observed
Modelled

Figure 6: M5 model tree (pruned) in predicting flow Q(t+1)

TLFeBOOK

208 Solomatine

numerical prediction:
• If the local model gives an average value of the instances for this local scope

(zero-order model), then the overall approach is called a regression tree.
Regression trees were introduced in the CART system of Breiman et al.
(1984). CART, for “classification and regression trees,” incorporated a
decision trees inducer for discrete classes very much like that of C4.5, which
was developed independently, as well as a scheme for inducing regression
trees.

• If a local model is a linear regression function of the input variables, then the
overall approach is called a model tree. There are two (similar) approaches
known:

• M5 models trees (Quinlan, 1992) implemented in Cubist software
(www.rulequest.com) and, with some changes, Weka software (Witten &
Frank, 2000). Some details of the M5 algorithms are given by Wang and
Witten (1997).

• Approach by Friedman (1991) in his MARS (multiple adaptive regression
splines) algorithm implemented as MARS software (www.salford-
software.com).

Note that the model tree approach is oriented at building a linear model locally,
so that overall it can be said that this piece-wise linear model has some properties
of a non-linear model.

The construction of model trees is similar to that used in construction of
decision trees, although the splitting criterion is different. Each leaf then represents
a local model and in principle could be (locally) more accurate than a global model
(even a non-linear one, e.g., a neural network) trained on the whole data set. The
M5 model trees splitting criterion is SDR (standard deviation reduction), which is
used to determine which attribute is the best to split the portion T of the training data
that reaches a particular node:

)()(i
i

i Tsd
T
T

TsdSDR ×−= ∑

where T1, T2,… are the sets that result from splitting the node according to the
chosen attribute; sd (.) is the standard deviation.

The linear regression method is based on an assumption of linear dependencies
between input and output. In an M5 model tree, a step towards non-linearity is
made—since it builds a model that is locally linear, but overall is non-linear. In fact
an M5 tree is a modular model—it consists of modules that are responsible for

TLFeBOOK

Applications of Data-Driven Modelling 209

modelling particular subspace of the input space. Model trees may serve as an
alternative to ANNs (which are global models), are often almost as accurate as
ANNs and have important advantages:
• Training of MT is much faster than ANN, and it always converges.
• The results can be easily understood by decision makers.
• By applying pruning (that is making trees smaller by combining subtrees in one

node), it is possible to generate a range of MTs—from an inaccurate but simple
linear regression (one leaf only) to a much more accurate but complex
combination of local models (many branches and leaves).

Practical Applications
Data-driven methods, especially neural networks, know dozens of successful

applications in the water sector. The use of ANNs to model the rainfall-runoff
process is addressed in the works of Hsu et al. (1995), Minns and Hall (1996),
Abrahart and See (2000), and in a collection of papers edited by Govindaraju and
Ramachandra Rao (2000).

Our experience of using machine learning methods in real-valued prediction
includes:
• replicating behavior of hydrodynamic/hydrological model of Apure river basin

(Venezuela) with the objective of using the ANN in model-based optimal
control of a reservoir (Solomatine & Torres, 1996);

• modelling a channel network using ANN (Price et al., 1998);
• building ANN-based intelligent controller for real-time control of water levels

in a polder (Lobbrecht & Solomatine, 1999);
• modelling rainfall-runoff process with ANNs (Dibike, Solomatine & Abbott,

1999);
• surge water level prediction in the problem of ship guidance using ANN;
• reconstructing stage-discharge relationship using ANN (Bhattacharya &

Solomatine, 2000);
• using M5 model trees to predict discharge in a river (see example below);
• using SVMs in prediction of water flows for flood management (Dibike,

Velickov, Solomatine & Abbott, 2001).

Here we will mention the application of model trees to the same data set as was
mentioned in the application of classification algorithms. It includes the hourly data
on rainfall and flow in a catchment for 3 months. Training set includes 1,854, and
the verification set —300 instances. The problem is to predict the discharge value
Qt+1 for the next hour. Analysis of the catchment and the mutual dependencies
between variables allowed for selecting the following input variables: effective
rainfall (RE) for times t, t-1, t-2, t-3, t-4, t-5, and discharges Q at times t,

TLFeBOOK

210 Solomatine

t-1, t-2, t-3.
Multiple linear regression model was built and has the following form:

Qt+1 = 0.842 + 1.04REt + 5.05REt-1 - 1.23REt-2 - 0.0842REt-
3 + 0.419REt-4

 - 0.429REt-5 + 1.87Qt - 1.2Qt-1 + 0.295Qt-2

with the RMSE on a verification set of 82.6 m3/s.
M5 model tree was built for the same problem with the help of Weka software

(Witten & Frank, 2000) and it is shown below:

Qt <= 59.4 :
| Qt <= 32.5 : LM1 (1011/1.64%)
| Qt > 32.5 : LM2 (396/6.17%)
Qt > 59.4 :
| Qt <= 128 :
| | Qt <= 87.5 :
| | | REt-3 <= 0.264 : LM3 (170/5.44%)
| | | REt-3 > 0.264 :
| | | | REt-2 <= 1.13 : LM4 (36/6.43%)
| | | | REt-2 > 1.13 :
| | | | | REt-3 <= 1.45 : LM5 (9/20.4%)
| | | | | REt-3 > 1.45 :
| | | | | | REt-4 <= 1.35 : LM6 (3/10%)
| | | | | | REt-4 > 1.35 : LM7 (3/22.2%)
| | Qt > 87.5 :
| | | Qt <= 103 :
| | | | REt <= 0.121 :
| | | | | Qt <= 95 :
| | | | | | Qt-2 <= 88.1 : LM8 (5/9.21%)
| | | | | | Qt-2 > 88.1 : LM9 (18/7.53%)
| | | | | Qt > 95 : LM10 (19/7.04%)
| | | | REt > 0.121 :
| | | | | REt <= 1.68 :
| | | | | | REt-5 <= 0.167 : LM11 (2/6.82%)
| | | | | | REt-5 > 0.167 : LM12 (5/17.1%)
| | | | | REt > 1.68 :
| | | | | | REt <= 3.83 : LM13 (2/7.08%)
| | | | | | REt > 3.83 : LM14 (2/0.144%)
| | | Qt > 103 : LM15 (50/7.77%)
| Qt > 128 : LM16 (123/38.6%)

Models at the leaves:
LM1: Qt+1 = 0.0388 + 0.0176REt + 0.0535REt-1 + 0.00866REt-2 +

0.037REt-3 + 1.01Qt - 0.0127Qt-1 + 0.00311Qt-2
LM2: Qt+1 = -0.221 + 0.0277REt + 1.68REt-1 + 0.0411REt-2 + 7.3REt-

3 + 1Qt - 0.0127Qt-1 + 0.00311Qt-2

TLFeBOOK

Applications of Data-Driven Modelling 211

LM3: Qt+1 = 3.33 + 0.284REt + 0.761REt-1 + 0.927REt-2 + 0.43REt-3
- 0.488REt-4 - 0.0852REt-5 + 1.04Qt - 0.147Qt-1 + 0.0351Qt-2

LM4: Qt+1 = 7.14 + 0.452REt + 0.761REt-1 + 7.46REt-2 + 1.04REt-3 -
1.1REt-4 - 0.0852REt-5 + 0.983Qt - 0.147Qt-1 + 0.0351Qt-2

LM5: Qt+1 = 35.9 + 0.771REt + 0.761REt-1 + 7.72REt-2 + 2.69REt-3 -
1.1REt-4 - 0.0852REt-5 + 0.622Qt - 0.147Qt-1 + 0.0351Qt-2

LM6: Qt+1 = 39.5 + 0.452REt + 0.761REt-1 + 7.72REt-2 + 2.92REt-3 -
1.1REt-4 - 0.0852REt-5 + 0.622Qt - 0.147Qt-1 + 0.0351Qt-2

LM7: Qt+1 = 38.8 + 0.452REt + 0.761REt-1 + 7.72REt-2 + 2.92REt-3 -
1.1REt-4 - 0.0852REt-5 + 0.622Qt - 0.147Qt-1 + 0.0351Qt-2

LM8: Qt+1 = 29.3 + 2.58REt + 1.14REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 1.51REt-5 + 1.02Qt - 0.422Qt-1 + 0.085Qt-2

LM9: Qt+1 = 37.1 + 2.58REt + 1.14REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 1.51REt-5 + 1.02Qt - 0.422Qt-1 - 0.0197Qt-2

LM10: Qt+1 = 34.2 + 2.58REt + 1.14REt-1 + 0.241REt-2 + 0.186REt-3
- 0.3REt-4 - 1.51REt-5 + 1.03Qt - 0.422Qt-1 + 0.0148Qt-2

LM11: Qt+1 = 32.8 + 4.1REt + 3.85REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.0524Qt-2

LM12: Qt+1 = 32.6 + 4.1REt + 3.85REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.0524Qt-2

LM13: Qt+1 = 35.9 + 4.1REt + 4.28REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.0524Qt-2

LM14: Qt+1 = 36 + 4.1REt + 4.28REt-1 + 0.241REt-2 + 0.186REt-3 -
0.3REt-4 - 2.76REt-5 + 1.11Qt - 0.422Qt-1 - 0.0524Qt-2

LM15: Qt+1 = 9.39 + 1.37REt + 3.78REt-1 + 0.241REt-2 + 0.186REt-3
- 0.3REt-4 - 0.473REt-5 + 1.66Qt - 0.97Qt-1 + 0.211Qt-2

LM16: Qt+1 = 0.432 + 3.99REt + 3.24REt-1 - 0.04REt-2 + 1.76Qt -

1.07Qt-1 + 0.257Qt-2

(here the RMSE on a verification set dropped down to just 3.85 m3/s.)

This tree was found to be too complex. The pruned (reduced) model tree (to
3 rules) from the total of 16 rules is shown below:

Qt <= 59.4 :
| Qt <= 32.5 : LM1 (1011/1.64%)
| Qt > 32.5 : LM2 (396/6.17%)
Qt > 59.4 : LM3 (447/23.5%)

LM1: Qt+1 = 0.0388 + 0.0108REt + 0.0535REt-1 + 0.0173REt-2 +
0.0346REt-3 + 1.01Qt - 0.0127Qt-1 + 0.00311Qt-2

LM2: Qt+1 = -0.221 + 0.0108REt + 1.68REt-1 + 0.0626REt-2 + 7.3REt-
3 + 1Qt - 0.0127Qt-1 + 0.00311Qt-2

LM3: Qt+1 = 3.04 + 2.46REt + 4.97REt-1 - 0.04REt-2 + 1.75Qt -

1.08Qt-1 + 0.265Qt-2

The RMSE on a verification set dropped even further down to 3.6 m3/s. (The
reduction of the error may show that the original large tree was overfit.) Figure 7
shows the predicted discharge against the measured one.

TLFeBOOK

212 Solomatine

Note that the final pruned model tree model does not use variables REt-3 ,
REt-4 , REt-5 . The tree actually generated three models which are associated with
the three levels of flow: very low (below 32.5 m3/s), low (from 32.5 to 59.6 m3/s),
and high (above 59.5 m3/s). The analysis of regression coefficients may help the
hydrological analysis: for example, it can be seen that in LM3 (high flows), the
influence of the previous values of flows (Qt-1 and Qt-2) is much higher than in the
models for lower flows.

This final tree is very simple, understandable, needs even less input variables

FLOW-S1 set: Prediction of flow Q(t+1)
Inputs: REt, REt-1, REt-2, REt-3, Qt, Qt-1

Output: Qt+1

0
50

100
150
200
250
300
350

0 50 100 150 200 250 300 350
t [hrs]

Discharge
[m3/s]

Observed
ANN

Figure 7: ANN (MLP) in predicting flow Q(t+1): 9 inputs, 5 hidden nodes, 1
output

Figure 8: ANN (MLP) in predcting flow Q(t+3)
 FLOW-S1: ANN Verification (01/12/59, 7:00 to 13/12/59, 8:00)

Inputs: RE t , RE t-1 , RE t-2 , RE t-3 , Q t , Q t-1
Output : Q t+3

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350
t [hrs]

Discharge [m 3 /s]

Observed
Modeled

TLFeBOOK

Applications of Data-Driven Modelling 213

to feed and gives the lowest verification error. Its accuracy was found to be
practically the same as of the ANN (RMSE=5.3 m3/s) (Figure 8). It is interesting
to see how the accuracy decreases (however, not considerably) for the problem of
predicting flow Q(t+3), that is 3 hours ahead (Figure 9; this ANN has 6 inputs
instead of 9 due to the fact that there are not enough past measurements that would
influence the flow 3 hours ahead).

FUZZY RULE-BASED SYSTEMS
The notion of fuzzy logic was introduced by L. Zadeh in 1965 and since then

fuzzy systems are used in many applications, including, for example, controllers of
washing machines or video cameras. Ideas of fuzzy logic are also used in building
data-driven models trained on large data sets. Fuzzy rule-based systems (FRBSs)
can be built by interrogating humans, or by processing the historical data. We used
the second type of rules, and the basics of this approach are described in the books
of Bardossy and Duckstein (1995), and Kosko (1993, 1997). Applications of

Figure 9: Interpretation of an aerial photo using Kohonen network (SOFM)
and SVM classifiers (Velickov et al., 2000); the predicted class labels are
shown:W: Wood and scrub, A: Agriculture, M: Meadow, U: Urban area

original image (256*256 pixels) gray scale of window
 average (16*16) class labels

reproduced image predicted class labels
by the VQ classifier

reproduced image by the SVM predicted class labels
 classifier (radial basis functions)

TLFeBOOK

214 Solomatine

FRBS in water resources can be found in Pesti et al. (1996), Pongracz et al. (1999)
and Abebe et al. (1999).

Practical Applications
Fuzzy logic had a significant number of applications; some of them are

mentioned below:
• Bardossy et al. (1995) modeled the movement of water in the unsaturated zone

using a fuzzy rule-based approach. Data generated by numerical solution of
Richard’s equation was used as examples to train (i.e., formulate the rules of)
a fuzzy rule-based model.

• Bardossy and Duckstein (1995) also used adaptive fuzzy systems to model
daily water demand time series in the Ruhr basin, Germany, and used fuzzy
rules to predict future water demand. The approach used three input variables:
the day of the week (working day or holiday), the daily maximum temperature
and the general weather conditions of the previous days.

• Pesti et al. (1996) proposed a methodology for predicting regional droughts
from large-scale atmospheric patterns. A fuzzy rule-based model was used to
predict the so-called Palmer’s Drought Severity Index (PDSI) of the New
Mexico area based on atmospheric circulation patterns of the United States.
With past records split for training and verification, good predictive abilities
were reported in addition to easy implementation, simple coding and little
computer time.

Our experience includes:
• Abebe, Solomatine and Venneker (1999) used FRBS for prediction of

precipitation events.
• Abebe, Guinot and Solomatine (2000) used fuzzy logic approach in the

analysis of groundwater model uncertainty.
• Lobbrecht and Solomatine (1999) used FRBS in building an intelligent

controller for water management in polder areas.

NON-LINEAR DYNAMICS: CHAOS THEORY
Chaos theory (formulated by Lorentz in 1963) appeared to be an excellent

predictive tool for time series. It uses only the time series itself, without the use of
other related variables, so it is applicable when the time series carries enough
information about the behavior of the system.

 Chaos comprises a class of signal intermediate between regular sinusoidal
or quasiperiodic motions and unpredictable, truly stochastic behavior (Tsonis,
1992). Chaotic systems are treated as “slightly predictable” and normally are

TLFeBOOK

Applications of Data-Driven Modelling 215

studied in the framework of non-linear system dynamics. With conventional linear
tools such as Fourier transform, chaos looks like “noise,” but chaos has structure
seen in the phase (state) space. The main reason for applying chaos theory is the
existence of methods permitting prediction of the future positions of the system in
the state space. The predictive capacity of chaos theory is by far better than any of
the linear models like ARIMA.

Practical Application
We used chaos theory to predict the surge water level in the North Sea close

to Hook of Holland; the data set included measurements of surge for 5 years with
the 10-minute interval. For two-hours prediction the error was as low as 10 cm and
superceded the methods used earlier (Solomatine et al., 2000).

CONCLUSION
Data-driven methods (in other words, methods of machine learning and data

mining) have proven their applicability in many areas, including the financial sector,
customer resource management, engineering, etc. Our experience shows their
applicability to a wide range of problems associated with control of water
resources. Normally a particular domain area will benefit from data-driven
modelling if:
• there is a considerable amount of data available;
• there are no considerable changes to the modeled system during the period

covered by modelling;
• it is difficult to build knowledge-driven simulation models, or in particular cases

they are not adequate enough;
• there is a necessity to validate the results of simulation models with other types

of models.

Successful analysis and prediction should be always based on the use of
various types of models. For example, our experience shows that M5 model trees,
combining local and global properties, could be close in accuracy to neural
networks (being global, that is trained on the whole data set), and are more easily
accepted by decision makers due to their simplicity.

The future is seen in using the hybrid models combining models of different
types and following different modelling paradigms. It can be foreseen that the
computational intelligence (machine learning) will be used not only for building data-
driven models, but also for building optimal and adaptive model structures of such
hybrid models.

TLFeBOOK

216 Solomatine

ACKNOWLEDGMENTS
Part of this work was performed in the framework of the project “Data mining,

knowledge discovery and data-driven modelling” of the Delft Cluster research
programme supported by the Dutch government. The author is grateful to his co-
authors and colleagues at IHE-Delft for the fruitful cooperation.

REFERENCES
Abebe, A.J., Guinot, V. & Solomatine, D.P. (2000). Fuzzy alpha-cut vs. Monte

Carlo techniques in assessing uncertainty in model parameters, Proceedings
of the 4th International Conference on Hydroinformatics, Iowa City,
USA, July.

Abebe, A.J., Solomatine, D.P., & Venneker, R. Application of adaptive fuzzy rule-
based models for reconstruction of missing precipitation events, Hydrologi-
cal Sciences Journal, (45).

Abrahart, R.J. & See, L. (2000). Comparing neural network and autoregressive
moving average techniques for the provision of continuous river flow forecast
in two contrasting catchments. Hydrological Processes, (14), 2157-2172.

Aizerman, M., Braverman, E. & Rozonoer, L. (1964). Theoretical foundations of
the potential function method in pattern recognition learning, Automation and
Remote Control. (25), 821-837.

Bhattacharya, B. (2000). Machine Learning in Real-Time Control of Regional
Water Systems. MSc Thesis. IHE-Delft, The Netherlands.

Bhattacharya, B. & Solomatine, D.P. (2000). Application of artificial neural
network in stage-discharge relationship, Proceedings of the 4th Interna-
tional Conference on Hydroinformatics, Iowa City, USA, July.

Dibike, Y., Solomatine, D.P. & Abbott, M.B. (1991). On the encapsulation of
numerical-hydraulic models in artificial neural network, Journal of Hydraulic
Research, No. 2, 147-161.

Dibike, Y.B., Velickov, S., Solomatine, D.P. & Abbott, M.B. (2001). Model
induction with support vector machines: Introduction and applications. Jour-
nal of Computing in Civil Engineering, American Society of Civil Engi-
neers (ASCE), 15(3), 208-216.

Gershenfeld, N.A. (2000). The Nature of Mathematical Modelling. Cambridge
University Press.

Govindaraju, R.S. & Ramachandra Rao, A. (Eds.). (2001). Artificial Neural
Networks in Hydrology. Dordrecht, Kluwer.

Hall, M. J. & Minns, A. W. (1999). The classification of hydrologically homoge-

TLFeBOOK

Applications of Data-Driven Modelling 217

neous regions. Hydrol. Sci. J., (44), 693-704.
Kolmogorov, A.N. (1957). On the representation of continuous functions of

several variables by superposition of continuous functions of one variable and
addition. Doklady Akademii Nauk SSSR, (114), 953-956.

Koza, J. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection, MIT Press, Cambridge.

Leonard, T. & Hsu, J.S.J. (1999). Bayesian Methods: An Analysis for Statisti-
cians and Interdisciplinary Researchers, Cambridge University Press.

Lobbrecht, A.H. & Solomatine, D.P. (1999). Control of water levels in polder
areas using neural networks and fuzzy adaptive systems, In D. Savic, G.
Walters (Eds), Water Industry Systems: Modelling and Optimization
Applications, Research Studies Press Ltd., 509-518.

Mitchell, T.M. (1998). Machine learning. McGraw-Hill.
Price, R.K., Samedov, J. & Solomatine, D.P. (1998). Network modelling using

artificial neural networks, Proceedings International Conference on
Hydroinformatics, Balkema, Rotterdam.

Quinlan, J.R. (1992). C4.5: Program for Machine Learning, Morgan Kaufmann.
Solomatine, D.P. & Torres, L.A. (1996). Neural network approximation of a

hydrodynamic model in optimizing reservoir operation. Proceedings of the
2nd International Conference on Hydroinformatics, Zurich, 201-206
September 9-13.

Solomatine,D.P., Rojas,C., Velickov, S. & Wust, H. (2000). Chaos theory in
predicting surge water levels in the North Sea, Proceedings of the 4th
International Conference on Hydroinformatics, Iowa City, USA, July.

 Tsonis, A.A. (1992). Chaos: From Theory to Applications, New York: Plenium
Press.

Tsoukalas, L.H. & Uhrig, R.E. (1997). Fuzzy and Neural Approaches in
Engineering, New York: John Wiley & Sons.

Vapnik, V.N. (1998). Statistical Learning Theory, New York: John Wiley &
Sons.

Velickov, S. & Solomatine, D.P. (2000). Predictive data mining: Practical ex-
amples, 2nd Workshop on AI methods in Civil Engineering, Cottbus,
March.

Velickov, S., Solomatine, D.P, Yu, X. & Price, R.K. (2000). Application of data
mining techniques for remote sensing image analysis, Proceedings of the 4th
International Conference on Hydroinformatics, Iowa City, USA, July.

Watkins, C. & Dayan, P. (1992). Q-learning, Machine Learning, 3(8), 279-292.
Witten, I.H. & Frank, E. (2000). Data Mining, Morgan Kaufmann Publishers.
Zadeh, L.A. (1965). Fuzzy sets. Inf. Control, (8), 338-353.

TLFeBOOK

218 Sarker, Abbass and Newton

Chapter XIII

Solving Two Multi-Objective
Optimization Problems Using

Evolutionary Algorithm
Ruhul A. Sarker, Hussein A. Abbass and Charles S. Newton

University of New South Wales, Australia

Copyright © 2003, Idea Group Inc.

ABSTRACT
Being capable of finding a set of pareto-optimal solutions in a single run is a
necessary feature for multi-criteria decision making, Evolutionary algorithms
(EAs) have attracted many researchers and practitioners to address the
solution of Multi-objective Optimization Problems (MOPs). In a previous
work, we developed a Pareto Differential Evolution (PDE) algorithm to
handle multi-objective optimization problems. Despite the overwhelming
number of Multi-objective Evolutionary Algorithms (MEAs) in the literature,
little work has been done to identify the best MEA using an appropriate
assessment methodology. In this chapter, we compare our algorithm with
twelve other well-known MEAs, using a popular assessment methodology, by
solving two benchmark problems. The comparison shows the superiority of
our algorithm over others.

INTRODUCTION
Multi-objective optimization problems (MOPs) optimize a set of conflicting

objectives simultaneously. MOPs are a very important research topic, not only
because of the multi-objective nature of most real-world decision problems, but

TLFeBOOK

Multi-Objective Evolutionary Algorithm 219

also because there are still many open questions in this area. In fact, there is no one
universally accepted definition of optimum in MOP as opposed to single-objective
optimization problems, which makes it difficult to even compare results of one
method to another. Normally, the decision about what the best answer is
corresponds to the so-called human decision maker (Coello Coello, 1999).

Traditionally, there are several methods available in the Operational Research
(OR) literature for solving MOPs as mathematical programming models (Coello
Coello, 1999). None of the OR methods treat all the objectives simultaneously
which is a basic requirement in most MOPs. In addition, these methods handle
MOPs with a set of impractical assumptions such as linearity and convexity.

In MOPs, there is no single optimal solution, but rather a set of alternative
solutions. These solutions are optimal in the wider sense since there are no other
solutions in the search space that are superior to (dominate) them when all
objectives are simultaneously considered. They are known as pareto-optimal
solutions. Pareto-optimality is expected in MOPs to provide flexibility for the
human decision maker.

Recently, evolutionary algorithms (EAs) were found to be useful for solving
MOPs (Zitzler & Thiele, 1999). EAs have some advantages over traditional OR
techniques. For example, considerations for convexity, concavity and/or continuity
of functions are not necessary in EAs, whereas they form a real concern in traditional
OR techniques. Although EAs are successful, to some extent, in solving MOPs, the
methods appearing in the literature vary a lot in terms of their solutions and the way
of comparing their best results with other existing algorithms. In other words, there
is no well-accepted method for MOPs that will produce a good set of solutions for
all problems. This motivates the further development of good approaches to
MOPs.

Recently, we developed a novel Differential Evolution (DE) algorithm for
MOPs (Abbass, Sarker & Newton, 2001). The approach showed promising
results when compared with the Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler & Thiele, 1999) for two benchmark problems. However there are
several other known methods such as Fonseca and Fleming’s genetic algorithm
(FFGA) (Fonseca & Fleming, 1993), Hajela’s and Lin’s genetic algorithm
(HLGA) (Hajela & Lin, 1992), Niched Pareto Genetic Algorithm (NPGA) (Horn,
Nafpliotis & Golberg, 1994), Non-dominated Sorting Genetic Algorithms (NSGA)
(Srininas & Dev, 1994), Random Sampling Algorithm (RAND) (Zitzler & Thiele,
1999), Single Objective Evolutionary Algorithm (SOEA) (Zitzler & Thiele, 1999),
Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) and Pareto
Archived Evolution Strategy (PAES) (Knowles & Corne, 1999, 2000). There are
several versions of PAES like PAES, PAES20, PAES98 and PAES98mut3p. In
this chapter, we compare the solutions of two benchmark problems, produced by

TLFeBOOK

220 Sarker, Abbass and Newton

our DE algorithm with all these methods, using a statistical comparison technique
recently proposed by Knowles and Corne (1999, 2000). From the comparison,
it is clear that our algorithm outperforms most algorithms when applied to these two
test problems.

The chapter is organized as follows. After introducing the research context,
previous research is scrutinized. This is followed by the proposed algorithm.
Experiments are then presented and conclusions are drawn.

PREVIOUS RESEARCH
Existing MEAs

MEAs for solving MOPs can be categorized as plain aggregating, population-
based non-pareto and pareto-based approaches (Coello Coello, 1999). In this
section, we would briefly discuss several population-based approaches as they are
more successful when solving MOPs, and are popular among researchers and
practitioners.

The Random Sampling Evolutionary Algorithm (RAND) (Zitzler & Thiele,
1999) generates randomly a certain number of individuals per generation, according
to the rate of crossover and mutation (though neither crossover, mutation nor
selection are performed). Hence the number of fitness evaluations was the same as
for the EAs. Another algorithm called Single Objective Evolutionary Algorithm
(SOEA) (Zitzler & Thiele, 1999) uses the weighted-sum aggregation. In contrast
to other algorithms, 100 independent runs were performed per test problem, each
run being optimized towards another randomly chosen linear combination of the
objectives. The non-dominated solutions among all solutions generated in the 100
runs form the trade-off frontier achieved on a particular test problem.

The Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) is a
population-based non-Pareto approach. In this approach, the total population is
divided into a number of populations equal to the number of objective functions to
be optimized. Each population is used to optimize each objective function
independently. The populations are then shuffled together followed by conventional
crossover and mutation operators. Schaffer (Schaffer, 1985) realized that the
solutions generated by his system were non-dominated in a local sense, because
their non-dominance was limited to the current population, and while a locally
dominated individual is also globally dominated, the converse is not necessarily true.

Hajela and Lin’s genetic algorithm (HLGA) (Hajela & Lin, 1992) is also a non-
Pareto approach that uses the weighted-sum method for fitness assignment.
Thereby, each objective is assigned a weight between zero and one, with the sum
of all weights being exactly equal to one. To search for multiple solutions in parallel,

TLFeBOOK

Multi-Objective Evolutionary Algorithm 221

the weights are encoded in the genotype. The diversity of the weight combinations
is promoted by phenotypic fitness sharing. As a consequence, the EA evolves
solutions and weight combinations simultaneously.

In the pareto-based approaches, the dominated and non-dominated solutions
in the current population are separated. Goldberg (1989) suggested a non-
dominated ranking procedure to decide the fitness of the individuals. Later, Srinivas
and Dev (1994) introduced Non-dominated Sorting Genetic Algorithms (NSGAs)
based on the idea of Goldberg’s procedure. In this method, the fitness assignment
is carried out through several steps. In each step, the non-dominated solutions
constituting a non-dominated frontier are assigned the same dummy fitness value.
These solutions have the same fitness values and are ignored in the further
classification process. Finally, the dummy fitness is set to a value less than the
smallest shared fitness value in the current non-dominated frontier. Then the next
frontier is extracted. This procedure is repeated until all individuals in the population
are classified.

Fonseca and Fleming (1993) proposed a slightly different scheme which is
known as Fonseca and Fleming’s genetic algorithm (FFGA). In this approach, an
individual’s rank is determined by the number of individuals dominating it. Without
using any non-dominated ranking methods, Horn, Nafpliotis and Golberg (1994)
proposed the Niched Pareto Genetic Algorithm (NPGA) that combines tournament
selection and the concept of Pareto dominance. Two competing individuals and a
comparison set of other individuals are picked at random from the population; the
size of the comparison set is given by a user-defined parameter. If one of the
competing individuals is dominated by any member of the set and the other is not,
then the latter is chosen as the winner of the tournament. If both individuals are
dominated (or not dominated), the result of the tournament is decided by sharing:
the individual that has the least individuals in its niche (defined by the niche radius)
is selected for reproduction. Horn et al. (1994) used phenotypic sharing on the
objective vectors.

The common features of the Pareto-based approaches mentioned above are:
(i) the Pareto-optimal solutions in each generation are assigned either the same
fitness or rank, and (ii) some sharing and niche techniques are applied in the selection
procedure. Recently, Zitler and Thiele (1999) proposed a Pareto-based method,
the Strength Pareto Evolutionary Algorithm (SPEA). The main features of this
approach are: it (i) sorts the non-dominated solutions externally and continuously
updates the population, (ii) evaluates an individual’s fitness depending on the
number of external non-dominated points that dominate it, (iii) preserves population
diversity using the Pareto dominance relationship and (iv) incorporates a clustering
procedure in order to reduce the non-dominated set without destroying its
characteristics.

TLFeBOOK

222 Sarker, Abbass and Newton

Most recently, Knowles and Corne (1999, 2000) proposed a simple Evolution
Strategy (ES), (1+1)-ES, known as the Pareto Archived Evolution Strategy
(PAES) that keeps a record of limited non-dominated individuals. The non-
dominated individuals are accepted for recording based on the degree of crowdiness
in their grid (defined regions on the Pareto frontier) location to ensure diversity of
individuals in the final solution. They also proposed an extension to this basic
approach, which results in some variants of a (µ+ λ) -ES. These are recognized as
PAES (on-line performance using an archive of 100 solutions), PAES20 (off-line
performance using an archive of 20 solutions), PAES98 (off-line performance using
an archive of 98 solutions) and PAES98mut3p (PAES98 but with a mutation rate
of 3%).

Our algorithm is a Pareto-based approach using Differential Evolution (DE)
for multi-objective optimization (Abbass, Sarker & Newton, 2001). This algorithm
is briefly introduced in a later section.

Comparison Techniques
MOPs require multiple, but uniformly distributed, solutions to form a Pareto

trade-off frontier. When comparing two algorithms, these two factors (number of
alternative solution points and their distributions) must be considered in addition to
the quality of solutions. There are a number of assessment methodologies available
in the literature to compare the performance of different algorithms. The error ratio
and the generational distance are used as the performance measure indicators
when the Pareto optimal solutions are known (Veldhuizen & Mamont, 1999). The
spread measuring technique expresses the distribution of individuals over the non-
dominated region (Srininas & Deb, 1994). The method is based on a chi-square-
like deviation distribution measure, and it requires several parameters to be
estimated before calculating the spread indicator. The method of coverage metrics
(Zitzler & Thiele, 1999) compares the performances of different multi-objective
evolutionary algorithms by indicating whether the outcomes of one algorithm
dominate those of another without measuring how much better it is.

A statistical comparison method called “attainment surfaces” was introduced
by Fonseca and Fleming (1996). For two objective problems, the attainment
surface is defined as the lines joining the points (candidate solutions) on the Pareto
frontier generated by an algorithm. Therefore, for two algorithms A and B, there are
two attainment surfaces. An attainment surface divides the objective space into two
regions: one containing vectors which are dominated by the results produced by the
algorithm, and another that contains vectors that dominate the results produced by
the algorithm. A number of sampling lines can be drawn from the origin, which
intersects with the attainment surfaces, across the full range of the Pareto frontier.

TLFeBOOK

Multi-Objective Evolutionary Algorithm 223

For a given sampling line, the intersection of an algorithm closer to the origin (for
both minimization) is the winner. Fonseca and Fleming’s idea was to consider a
collection of sampling lines which intersect the attainment surfaces across the full
range of the Pareto frontier.

If MEAs are run r times, each algorithm will return r attainment surfaces, one
from each run. Having these r attainment surfaces, some from algorithm A and some
from algorithm B, a single sampling line yields r points of intersection, one for each
surface. These intersections form a univariate distribution, and therefore, we can
perform standard non-parametric statistical procedures to determine whether or
not the intersections for one of the algorithms occurs closer to the origin with some
statistical significance. Such statistical tests have been performed by Knowles and
Corne (2000) for each of the lines covering the Pareto trade-off area. Insofar as the
lines provide a uniform sampling of the Pareto surface, the result of this analysis
yields two numbers: a percentage of the surface in which algorithm A outperforms
algorithm B with statistical significance, and that when algorithm B outperforms
algorithm A.

Knowles and Corne (2000) presented their results of a comparison in the form
of a pair [a, b], where a gives the percentage of the space (i.e., the percentage of
lines) on which algorithm A was found statistically superior to B, and b gives the
similar percentage for algorithm B. Typically, if both A and B are ‘good,’ then a +
b < 100. The quantity [100 - (a + b)], of course, gives the percentage of the space
on which the results were statistically inconclusive. They use statistical significance
at the 95% confidence level. Knowles and Corne (2000) also extended their
comparison methodology to comparing more than two algorithms.

If the algorithms are competitive, the results of the statistical test may vary with
the number of sampling lines drawn since the procedure considers only the
intersection points of sampling lines and attainment surfaces. Knowles and Corne
(2000) proposed that 100 lines should be adequate, although, obviously, more lines
the better. They have shown experimentally that the percentage of the space (a +
b) increases, to give statistically significant results, with the increased number of
lines.

Differential Evolution
DE is a branch of evolutionary algorithms developed by Storn and Price

(1995) for optimization problems over continuous domains. In DE, each variable’s
value in the chromosome is represented by a real number. The approach works by
creating a random initial population of potential solutions, where it is guaranteed, by
some repair rules, that the value of each variable is within its boundaries. An
individual is then selected at random for replacement and three different individuals
are selected as parents. One of these three individuals is selected as the main parent.

TLFeBOOK

224 Sarker, Abbass and Newton

With some probability, each variable in the main parent is changed but at least one
variable should be changed. The change is undertaken by adding to the variable’s
value a ratio of the difference between the two values of this variable in the other
two parents. In essence, the main parent’s vector is perturbed by the other two
parents’ vectors. This process represents the crossover operator in DE. If the
resultant vector is better than the one chosen for replacement, it replaces it;
otherwise the chosen vector for replacement is retained in the population. Therefore,
DE differs from GA in a number of points:
1. DE uses real number representation while conventional GA uses binary,

although GA sometimes uses integer or real number representation as well.
2. In GA, two parents are selected for crossover and the child is a recombination

of the parents. In DE, three parents are selected for crossover and the child
is a perturbation of one of them.

3. The new child in DE replaces a randomly selected vector from the population
only if it is better than it. In conventional GA, children replace the parents with
some probability regardless of their fitness.

In DE, a solution, l, in generation k is a multi-dimensional vector
x = (G = k

l l
 N

 l
 1 x … , x ,) T . A population, PG=K, at generation G = k is a vector of M

solutions (M > 4). The initial population, P = G = 0 { G = 0
1 M

G = 0

 x … , x , } ,is initialized as

)),()((]1,0[)(0, iiii
l

Gi xlowerxupperrandxlowerx −×+== ,,...,1 Ml =
Ni ,...,2,1=

where M is the population size, N is the solution’s dimension, and each variable ix
in a solution vector l in the initial generation G = 0, ,0,

l
Gix = is initialized within its

boundaries (lower(x i), upper (x i)). Selection is carried out to select four different
solutions indices and j∈[1,M]. The values of each variable in the child are changed
with some crossover probability, CR, to:

Ni ≤∀
otherwisex

iiCRrandomifxxFx
x j

kGi

rand
r

kGi
r

kGi
r

kGi
KGi

1,

1,1,,1,
,

))1,0[()(
,

213

−=

−=−−=
=

=∨<−×+

=′

where F ∈ (0,1) is a problem parameter representing the amount of perturbation
added to the main parent. The new solution replaces the old one if it is better than
it and at least one of the variables should be changed. The latter is represented in
the algorithm by randomly selecting a variable, irand∈(1,N). After crossover, if one

TLFeBOOK

Multi-Objective Evolutionary Algorithm 225

or more of the variables in the new solution are outside their boundaries, the
following repair rule is applied until the boundary constraints are satisfied:

otherwisex

xupperxif
xupperx

xlower

xlowerxif
xlowerx

x
j
Gi

i
j
Gi

i
j
Gi

i

i
j
Gi

iGi

kGi

1,

1,
,

1,
,

,)(
2

)(
)(

)(
2

)(

+

+

+

= >
−

+

<
+

=′

A DIFFERENTIAL EVOLUTION ALGORITHM
FOR MOPS

A generic version of the adopted algorithm is presented at the end of this
chapter in Figure 3 with the following modifications:
1. The initial population is initialized according to a Gaussian distribution N

(0.5,0.15).
2. The step-length parameter F is generated from a Gaussian distribution N (0,1).
3. Reproduction is undertaken only among non-dominated solutions in each

generation.
4. Offspring are placed into the population if they dominate the main parent.
5. The boundary constraints are preserved either by reversing the sign if the

variable is less than 0 or keep subtracting 1 if it is greater than 1 until the variable
is within its boundaries.

The algorithm works as follows. An initial population is generated at random
from a Gaussian distribution with mean 0.5 and standard deviation 0.15. All
dominated solutions are removed from the population. The remaining non-
dominated solutions are retained for reproduction. If the number of non-dominated
solutions exceeds some threshold, a distance metric relation (Abbass, Sarker &
Newton, 2001) is used to remove those parents who are very close to each other.
Three parents are selected at random. A child is generated from the three parents
and is placed into the population if it dominates the first selected parent; otherwise
a new selection process takes place. This process continues until the population is
completed.

A maximum number of non-dominated solutions in each generation was set to
50. If this maximum is exceeded, the following nearest neighborhood distance
function is adopted:

TLFeBOOK

226 Sarker, Abbass and Newton

,
2

||)||min||||(min
)(ji xxxx

xD
−+−

=

where x ≠ xi ≠ xj. That is, the nearest neighborhood distance is the average
Euclidean distance between the closest two points. The non-dominated solution
with the smallest neighborhood distance is removed from the population until the
total number of non-dominated solutions is retained at 50.

EXPERIMENTS
Test Problems

The algorithm is tested using the following two benchmark problems from
Zitler and Thiele (1999):

 Test Problem 1: Convex function

11)(xxf =

))(1()(1
2 g

fgxf −×=

)1(
)(

91 2

−
×+= ∑ =

n
x

g
n

i i

30,...,1],1,0[=∈ ixi

Test Problem 2: Discontinuous function

11)(xxf =

))10sin()(1(*)(1
11

2 f
g
f

g
fgxf π−−=

)1(
)(

91 2

−
×+= ∑ =

n
x

g
n

i i

30,...,1],1,0[=∈ ixi

TLFeBOOK

Multi-Objective Evolutionary Algorithm 227

Both test problems contain two objective functions and 30 variables. The
computational results of these test problems are provided in the next section.

Experimental Setup
For our algorithm, the initial population size is set to 100 and the maximum

number of generations to 200. Twenty different crossover rates changing from 0 to
1.00 with an increment of 0.05 are tested without mutation. The initial population
is initialized according to a Gaussian distribution N (0.5,0.15). Therefore, with high
probability, the Gaussian distribution will generate values between 0.5 ± 3 ×0.15
which fits with the variables' boundaries. If a variable’s value is not within its
boundary, a repair rule is used to repair the boundary constraints. The repair rule is
applied simply to truncate the constant part of the value; therefore if, for example, the
value is 3.3, the repaired value will be 0.3 assuming that the variable is between 0 and
1. The step-length parameter F is generated for each variable from a Gaussian
distribution N (0,1). The algorithm is written in standard C ++ and run on a Sun Sparc
4.

Experimental Results and Discussions
In this section, the solutions of two test problems, provided by our PDE

algorithm, are compared with the solutions of 12 other MEAs (FFGA, HLGA,
NPGA, NSGA, RAND, SOEA, SPEA, VEGA, PAES, PAES20, PAES98 and
PAES98mut3p) using a statistical comparison technique. The results of other
algorithms, except PAESs, were obtained from the website http//
www.tik.ee.ethz.ch/~zitzler/testdata.html. The results for all PAESs were
obtained from http://www.rdg.ac.uk/~ssr97jdk/multi/PAES.html.

To perform the statistical analysis using the Knowles and Corne (2000)
method, we used the solutions of 20 runs of the DE algorithm for each crossover
rate. The results of the comparison are presented in the form of a pair [a, b] for each
crossover rate, where a gives the percentage of the space (i.e., the percentage of
lines) on which PDE algorithm is found statistically superior to the other, and b gives
the similar percentage for the other algorithm. For example, for test problem 1, the
best result using PDE [84.3,15.1] is achieved with crossover rate 0.15 when
compared to SPEA. This means, our algorithm outperforms SPEA on about 84.3%
of the Pareto surface whereas SPEA is statistically superior than our algorithm for
15.1%. For problem 2, the best result is obtained with crossover 0.05 when
compared to SPEA.

In Figures 1 and 2, the x-axis represents the crossover rate used in our PDE
algorithm and the y-axis is the percentage of superiority. Each figure contains a plot
of “a” for our PDE algorithm and “b” for one of the other existing algorithms for a

TLFeBOOK

228 Sarker, Abbass and Newton

Figure 1: Test problem 1

TLFeBOOK

Multi-Objective Evolutionary Algorithm 229

Figure 2: Test problem 2

TLFeBOOK

230 Sarker, Abbass and Newton

given problem. Twelve plots in Figure 1 show the comparison of PDE with each of
the other MEAs for test problem 1, and Figure 2 shows the same for test problem
2.

For both test problems, PDE is significantly better than FFGA, HLGA,
NPGA, RAND and VEGA irrespective of the crossover rate. PDE is much better
than NSGA for any crossover rate less than 0.85 for problem 1 and 0.8 for problem
2. PDE is superior than SOEA within the crossover rate 0.05 to 0.65 and SPEA
within 0.05 to 0.5 for test problem 1. These figures for test problem 2 are 0 to 0.45
and 0.05 to 0.1 respectively. PDE is clearly better than PAES, PAES98 and
PAES98mut3p for both test problems within a certain range of crossover rate.
Although PDE shows superiority over PAES20 for test problem 1, it shows very
little success for test problem 2. For test problem 1, a range of crossover rate for
PDE can successfully challenge all other MEAs. For example, the solution of PDE
at a crossover rate of 0.35 outperforms all other algorithms. From these results, it
can be stated that no algorithm (out of 12) produces optimal solutions. However,
PDE solutions could be close to the Pareto frontier though there is no guarantee.
For problem 2, there is no single crossover rate for which PDE is superior than all
the other MEAs. However such a rate can be found when we exclude one or two
MEAs. That means, no one is close to optimal although PDE outperforms most
algorithms.

CONCLUSIONS AND FUTURE RESEARCH
In this chapter, a novel differential evolution approach is discussed for multi-

objective optimization problems. The approach generates a step by mutation,
where the step is randomly generated from a Gaussian distribution. We tested the
approach on two benchmark problems and it was found that our approach
outperformed almost all existing MEAs. We also experimented with different
crossover and mutation rates, on these two test problems, to find their best
solutions. The crossover rates are found to be sensitive when compared with certain
MEAs. However, a trend was found which suggests that a large number of non-
dominated solutions were found with low-crossover rates. In future work, we
intend to test the algorithm on more problems.

Also, the parameters chosen in this chapter were generated experimentally. It
would be interesting to see the effect of these parameters on the problem.

TLFeBOOK

Multi-Objective Evolutionary Algorithm 231

REFERENCES
Abbass, H., Sarker, R. & Newton, C. (2001). A Pareto differential evolution

approach to vector optimization problems. Congress on Evolutionary
Computation, 2, 971-978.

Coello Coello, C. (1999). A comprehensive survey of evolutionary-based multi-
objective optimization techniques. Knowledge and Information Systems 1
(3), 269-308.

Fonseca, C. & Fleming, P. (1993). Genetic algorithms for multi-objective optimi-
zation: Formulation, discussion and generalization. Proceedings of the Fifth
International Conference on Genetic Algorithms, San Mateo, California,
416-423.

Goldberg, D. (1989). Genetic Algorithms: In Search, Optimisation and
Machine Learning. Addison Wesley.

Hajela, P. &. Lin, C. (1992). Genetic search strategies in multi-criterion optimal
design. Structural Optimization, 4, 99-107.

Horn, J., Nafpliotis, N. & Goldberg, D. (1994). A niched Pareto genetic algorithm
for multi-objective optimization. Proceedings of the First IEEE Confer-
ence on Evolutionary Computation, 1, 82-87.

Knowles, J. & Corne, D. (1999). The Pareto archived evolution strategy: A new
baseline algorithm for multi-objective optimization. Proceedings of the 1999
Congress on Evolutionary Computation, Washington DC, IEEE Service
Centre, 98-105.

Knowles, J. & Corne, D. (2000). Approximating the non-dominated front using the
pareto archived evolution strategy. Evolutionary Computation, 8(2), 149-
172.

Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic
algorithms. Genetic Algorithms and Their Applications: Proceedings of
the First International Conference on Genetic Algorithms, 93-100.

Srinivas, N. & Deb, K. (1994). Multi-objective optimization using non-dominated
sorting in genetic algorithms. Evolutionary Computation 2(3), 221-248.

Storn, R. & Price, K. (1995). Differential evolution: A simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical Report
TR-95-012, International Computer Science Institute, Berkeley.

Veldhuizen, D. V. & Mamont, G. (1999). Multi-objective evolutionary algorithm
test suites. Proceedings of the 1999 ACM Sysposium on Applied Comput-
ing, San Antonio, Texas, ACM, 351-357.

Zitzler, E. & Thiele, L. (1999). Multi-objective evolutionary algorithms: A com-
parative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4), 257-271.

TLFeBOOK

232 Sarker, Abbass and Newton

APPENDIX: THE PARETO DIFFERENTIAL
EVOLUTION ALGORITHM

Let G denote a generation, P a population of size M, and

 G = k
 j x the thj individual of dimension N

in population P in generation k, and CR denotes the crossover probability
input N, M ≥ 4, α , CR ∈[0,1], and initial bounds: lower(x i),upper(x i), i = 1, … N
initialize

P = G = 0 { G = 0
1 M

G = 0

 x … , x , }
for each individual 0=∈ GPj

x NiGaussianj
Gi ,...,1),15.0,5.0(0, ===

repair

 G = k
 j x if any variable is outside its boundaries

end for each
evaluate

0=G
P

k = 1
while the stopping criterion is not satisfied do

remove all dominated solutions from 1−=kGP
if the number of non-dominated solutions in ,1 α>−=kGP then apply the neighborhood
rule
for j = 0 to number of non-dominated solutions in P

 G = k − 1 G = k
 j j

G = k − 1
 x ← x

while Mj ≤
randomly select),,...,1(,, 321 α∈rrr from the non-dominated solutions of

,1−=kGP where 321 rrr ≠≠
randomly select),...,1(Nirand ∈

forall =′≤ =kGixNi ,,

otherwisex
iiCRrandomifxxGaussianx

j
kGi

rand
r

kGi
r

kGi
r

kGi

1,

1,1,1,)]1,0[()()1,0(213

−=

−=−=−= =∧<−×+

end forall
Repair j

kGx =
r if any variable is outside its boundaries

If
 ′ x dominates G = k − 1

r3 x then

G = k
′ j x ← x

j = j+ 1
end if
end while
k = k + 1

end while
return the set of non-dominated solutions.

Figure 3: The Pareto frontier Differential Evolution Algorithm (PDE)

TLFeBOOK

Flexible Job-Shop Scheduling Problems 233

Chapter XIV

Flexible Job-Shop Scheduling
Problems: Formulation,
Lower Bounds, Encoding

and Controlled Evolutionary
Approach

Imed Kacem, Slim Hammadi and Pierre Borne
Laboratoire d’Automatique et Informatique de Lille, France

Copyright © 2003, Idea Group Inc.

ABSTRACT
The Job-shop Scheduling Problem (JSP) is one of hardest problems; it is

classified NP-complete (Carlier & Chretienne, 1988; Garey & Johnson,
1979). In the most part of cases, the combination of goals and resources can
exponentially increase the problem complexity, because we have a very large
search space and precedence constraints between tasks. Exact methods such
as dynamic programming and branch and bound take considerable computing
time (Carlier, 1989; Djerid & Portmann, 1996). Front to this difficulty, meta-
heuristic techniques such as evolutionary algorithms can be used to find a
good solution. The literature shows that they could be successfully used for
combinatorial optimization such as wire routing, transportation problems,
scheduling problems, etc. (Banzhaf, Nordin, Keller & Francone, 1998;
Dasgupta & Michalewicz, 1997).

TLFeBOOK

234 Kacem, Hammadi and Borne

In this chapter we deal with the problem of flexible JSP which presents
two difficulties: the first one is the assignment of each operation to a machine,
and the second one is the scheduling of this set of operations in order to
minimize a global criterion defined by a combination of many criteria (the
makespan, the workload of the critical machine and the total workload of the
machines). Practical and theoretical aspects of this problem are presented
and carefully studied. Then we describe the state of the art concerning
scheduling problems and evolutionary techniques. The evaluation function
will be constructed by combination of the criteria and the corresponding
lower bounds. The resolution method is based on many original direct
chromosome representations. Also, based on practical examples, we present
the efficiency of the suggested approach and some discussions about this
research work.

INTRODUCTION
Several problems in various industrial environments are combinatorial. This is

the case of numerous scheduling and planning problems. Generally, it is extremely
difficult to solve this type of problem in its general form. Scheduling can be defined
as a problem of finding the optimal sequence to execute a set of operations
respecting the different problem’s constraints. The problem set is extremely difficult
to solve, it consists generally in a simultaneous optimization of a set of conflicting and
concurrent goals. Therefore, the exact methods such as branch and bound, dynamic
programming and constraint logic programming need a lot of time to find an optimal
solution. So, we expect to find not necessary the optimal solution, but a good one
to solve the problem. New search techniques such as genetic algorithms (Banzhaf,
Nordin, Keller & Francone, 1998), simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983), tabu search (Golver, Taillard & De werra, 1993) are able to reach
our aim: find near optimal solutions for a wide range of combinatorial optimization
problems.

In this work, we propose a new controlled evolutionary approach for solving
a JSP and we describe the incorporation of the scheduling specific knowledge in
the genetic operators and in the different chromosome representations.

This chapter is organized as follows: the first section presents the formulation
of our flexible job-shop scheduling problem. In the second section, we present the
lower bounds and we construct a global fitness function. Some definitions and a
short description of genetic and evolutionary algorithms are presented in the third
section. In the section four, the different codings and the implemented operators of
the proposed methodology are described. Finally, the experimental results, discus-
sions and conclusions are presented in the last section.

TLFeBOOK

Flexible Job-Shop Scheduling Problems 235

PROBLEM FORMULATION
The structure of the flexible job-shop scheduling problem can be described as

follows:
• Set of N jobs {Jj} 1 ≤ j ≤ N, these jobs are independent of each other.
• Each job Jj represents a number of nj ordered operations.
• The execution of each operation j,i O requires a resource or machine selected

from a set of machines, U = {Mk} 1 ≤ k ≤ M. M is the total number of machines
existing in the shop, this imply the existence of the assignment problem.

• For each job, the order of operations is fixed (precedence constraints).
• All machines are available at t = 0 and each job Jj can be started at t = rj.
• There is a predefined set of processing times; for a given machine Mk, and a

given operation Oi, j , the processing time is defined and called di, j, k.
• An operation which has started runs to completion (non-preemption condi-

tion).
• Each machine can perform operations one after the other (resource con-

straints).
• To each operation Oi, j, we associate an earliest starting time ri, j calculated by

the following formula:

Nj1 r r jj1 ≤≤∀=, and Nj1 1,-ni1 r r jji,ji ji ≤≤∀≤≤∀+=+ γ,,1

where ()kji
k

ji d ,,, min=γ ,
• For each flexible job-shop problem, we can associate a table D of processing

times as in the following example:

D ={d
i,j,k

*IN ∈ /1 ≤ j ≤ N; 1 ≤ i ≤ nj; 1 ≤ k ≤ M}.

The flexible job-shop scheduling problems present two difficulties. The first
one is to assign each operation Oi, j to a machine Mk (selected from the set U). The

 M1 M2 M3 M4
O 1,1 1 3 4 1
O 2,1 3 8 2 1

J 1

O 3,1 3 5 4 7
O 1,2 4 1 1 4
O 2,2 2 3 9 3

J 2

O 3,2 9 1 2 2
O 1,3 8 6 3 5

J 3 O 2,3 4 5 8 1

second one is the computation of the starting times ti,j and the completion times tfi,j
of each operation Oi, j .

TLFeBOOK

236 Kacem, Hammadi and Borne

The considered objective is to globally minimize the following criteria:
• The makespan: ()jn

j
1r jtf C ,max= .

• The workload of the most loaded machine: ()k
k

2r W C max= (kW is the workload
of Mk).

• The total workload of machines: ∑=
k

k3r WC .

LOWER BOUNDS
Theorem

*1rC , *2rC and *3rC are respectively lower bounds for the considered criteria
321 and , rrr CCC , where:

M

R
E ,r C

Nk
j i

jiM

i
jij

j
1r 0

 ∑∑+

 ∑+= ~

,

,
~

,* ,maxmax θ
γ

γ

M

E C
Nk

j i
ji

2r 0

 ∑∑
= ~

,

,
~

* ,max δ
γ

and ∑∑=
j i

jirC ,*3 γ

The others variables are defined as follows:
•

~

E is a numerical function defined as follows:

if x is integer, () xxE =
~ , else () () 1 xE xE +=

~
 with ()xE is the integer part of x

• ()M
NEN t

~~
= with ∑

=

=
=

Nj

j
jt nN

1

•

= k

NkNk
D

0 ~~ min,
δ with k

N
~D is the sum of the ~

N shortest processing times of the
operations that we can execute on the machine Mk

• RM is the sum of the M little values of the starting times (ji r ,)

•

++=
∈

+−≤≤

 C d ji r ji N Z
k

E C
k

1NNz1
kNk

N ZN Z
ZZZZ

t
0

~
~

,
~

,
~

~
,''

,,,,
'minminmin ∆θ

• 'C ~
N ,Z

k

∆ is the sum of the processing times of the operations of ~
 ,' NZC on Mk

TLFeBOOK

Flexible Job-Shop Scheduling Problems 237

• ~
 ,' NZC is an element of ~

 ,' NZE and ~
 ,' NZE is the set of the combinations of (1

~
−N)

operations chosen among the (Nt - z) operations of Vz
• Vz is a part of the operations set defined as follows:

=
++++

O .., , jiO , j iO j i V
N tN t2Z2Z1Z1Z Z ,,, for

+∈ 1N- N 1 z t

~
,

where

j ir .., ,.jir ,jir N tN t2211 ,,, are ranged in the ascending order.

 Proof: see previous work (Kacem, Hammadi & Borne, 2002).

Fitness Function
So, we can reduce the multi-objective optimization to the minimization of the

following global criterion (qw is the importance weight of the criterion q Cr):

*q

q

3q1
qg

Cr
CrwC ⋅∑=

≤≤
 (with 1w

3q1
q =∑

≤≤
)

This formulation is inspired of a fuzzy evaluation technique presented in a
previous work (Kacem, Hammadi, & Borne 2001, a). In the ideal case, we obtain

1Cg = if 3 q 1 Cr Cr qq ≤≤∀= * .

GENETIC AND EVOLUTIONARY ALGORITHMS:
THE STATE OF THE ART

Evolutionary algorithms are general-purpose search procedures based on the
mechanisms of natural selection and genetic evolution. These algorithms are applied
by many users in different areas of engineering framework, computer science and
operation research. Current evolutionary approaches included evolutionary pro-
gramming, evolutionary strategies, genetic algorithms and genetic programming
(Banzhaf, Nordin, Keller & Francone, 1998; Dasgupta & Michalewicz, 1997;
Quagliarella, Périaux, Poloni & Winter, 1998; Goldberg, 1989; Fonseca &
Fleming, 1998).

TLFeBOOK

238 Kacem, Hammadi and Borne

What Genetic Algorithms Are
Genetic algorithms enable to make evolve an initial set of solutions to a final set

of solutions bringing a global improvement according to a criterion fixed at the
beginning (Quagliarella, Périaux, Poloni & Winter, 1998). These algorithms
function with the same usual genetic mechanisms (crossover, mutation, selection,
etc.). In the genetic algorithms, the solutions set is called population. Each
population is constituted of chromosomes whose each represents a particular
coding of a solution. The chromosome is constituted of a sequence of genes that can
take some values called alleles. These values are taken from an alphabet that has
to be judiciously chosen to suit the studied problem. The classic coding corresponds
to the binary alphabet: {0,1}. In this case, the chromosome represents simply a
finished table of 0 and 1. The operators that intervene in the genetic algorithms are
selection, crossover and mutation.

A genetic algorithm is an algorithm that represents a special architecture. It
operates on data without using preliminary knowledge on the problem processed.
In fact, it consists of the following stages:
• The genesis: it’s the generation phase of the initial population.
• The evaluation: in this stage, we compute the value of criterion for each

individual of the current population.
• The selection: after the evaluation, we choose better adapted elements for the

reproduction phase.
• The reproduction: we apply genetic operators (crossover, mutation…) on the

selected individuals.
• The test: in this phase, we evaluate the improvement and decide if the solution

is efficient. If the criterion reaches a satisfactory value, we take the current
solution. If the result is insufficient, we return to the second stage and we repeat
the same process until reaching the maximal iterations number.

Encoding Requirements
The implementation difficulty of these algorithms is in the conception of the

gene content in order to describe all data of the problem and to represent the
solutions. Choosing a good representation is a main stage of solving any optimiza-
tion problem. However, choosing a good representation for a problem is as difficult
as choosing a good search algorithm to solve it. Care must to be taken to adopt both
representational schemes and the associated genetic operators for an efficient
genetic search.

Problems of encoding have been observed in the genetic algorithms literature
(Dasgupta & Michalewicz, 1997). Traditionally, chromosomes are simple binary
vectors. This simple representation is an excellent choice for the problems in which

TLFeBOOK

Flexible Job-Shop Scheduling Problems 239

solutions can be represented by lists of zeros and ones. Unfortunately, this approach
cannot usually be used for real-word engineering problems such as a combinatorial
one (Portmann, 1996). Many modifications should be made, such as the permu-
tation of a basic string like that used for a Travelling Salesman Problem (Della
Croce, Tadei & Volta, 1995). An illegal solution can obviously be obtained by
applying traditional genetic operators (crossover and mutation). Some different
encodings are proposed in the literature (Baghi, Uckun, Miyab & Kawamura,
1991; Uckun, Baghi & Kawamura, 1993; Bruns, 1993). The encoding is presented
in two categories. The first one is the direct chromosome representation; we can
represent a scheduling problem by using the schedule itself as a chromosome; this
method generally requires developing specific genetic operators. The second one
is the indirect chromosome representation; the chromosome does not directly
represent a schedule, and transition from the chromosome representation to a legal
schedule decoder is needed.

Concerning evolutionary algorithms and flexible job-shop scheduling prob-
lems, the literature presents many interesting propositions. Some of them can be
used to solve the considered optimization problem. As examples, we have chosen
to present the following codings:

1) PMR (Parallel Machine Representation) (Mesghouni, 1999)
The chromosome is a list of machines placed in parallel. For each machine, we

associate operations to execute. Each operation is coded by three elements:
• i: the operation index
• Jj: the corresponding job
• ti,j: starting time of Oi,j on the corresponding machine M k

M 1 (i, Jj, t i, j) …
M 2 …
M 3 (i’, Jj’, t i’,j’)
….
M n … …

This representation is based on the Parallel Machine Encoding (PME) which
represents directly feasible schedules, gives all the necessary information to the
foreman, and also enables us to treat the assignment problem. But it represents
many difficulties to be implemented (Mesghouni, 1999). In fact, by using this
representation, it is possible to obtain illegal solutions. Then, a corrective algorithm
is needed. Unfortunately, these corrections increase the computation time and
reduce the representation efficiency.

TLFeBOOK

240 Kacem, Hammadi and Borne

2) PJsR (Parallel Jobs Representation) (Mesghouni, Hammadi & Borne,
1997)

The chromosome is represented by a list of jobs. Each job is represented by
the correspondent row where each place is constituted of two terms. The first term
represents the machine that executes the operation. The second term represents the
corresponding starting time (see the following figure).

J 1 (M1, t 1, 1) (M2, t 2, 1) …
J 2 (M5, t 1, 2) (M1, t 2, 2) (M2, t 3, 2)
J 3
…
J n … …

This representation is a direct encoding which permits us to solve some
problems met in the first encoding such as illegal solution (schedule) after a
crossover operation and the creation of the first population (Mesghouni, 1999).
This encoding integrates the precedence constraints, consequently we can create
randomly the first population, and the genetic operators are very simple and give a
feasible schedule, but we will see in the fifth section that this coding has a limited
exploration capacity of the search space compared to other possible codings.

Mesghouni (1999) has proposed crossover and mutation operators for the
two precedent chromosome representations, but, they are completely based on the
exchanging of assignment informations and are not able to deal with the problem
part of the tasks sequencing.

Portmann (1996) has presented other interesting coding possibilities for
scheduling problems with or without assignment. As an example, Portmann et al.
have proposed to use “ternary permutation matrix” with an “Assignment Vector.”
But, these codings are not specified for the flexible JSP.

In this paper, we have chosen to use a direct representation to give conviviality
and legibility to a chromosome and simplicity of use for a foreman. We suggest three
new direct chromosome representations with their genetic operators.

CONTROLLED EVOLUTIONARY APPROACH
In this section, we present a new controlled evolutionary approach to solve the

flexible job-shop scheduling problems.
The first stage of this method makes it possible to solve the problem of

resources allocation and to build an ideal assignments model (assignments sche-
mata).

TLFeBOOK

Flexible Job-Shop Scheduling Problems 241

The second stage is an evolutionary approach controlled by the assignment
model (generated in the first step). In this approach, we apply advanced genetic
manipulations in order to enhance solution quality and accelerate the convergence.

In the next paragraphs, we explain in details the different stages of this
approach (see Figure 1).

First Stage: Approach by Localization
1) Resolution of the assignment problem

In order to solve this problem, the Approach by Localization (AL) is based on
a set of assignment heuristics. These heuristics enable us to assign each operation
to the suitable machine, taking into account the processing times and workloads of
machines on which we have already assigned operations (Kacem, Hammadi &
Borne, 2001, c). The obtained solutions can be represented in a table with the same
size that the processing times table as for the following example:

Figure 1: Controlled evolutionary approach

Approach by Localization

E: Set of Assignments

Initial Population

Evaluation

Selection

Crossover, Mutations
Genetic Manipulations

Test

Assignment
S h

Scheduling & Evaluation

Final Solutions

Assignment Schemata

 M1 M2 M3 M4
O 1,1 0 0 0 1
O 2,1 0 0 0 1

J 1

O 3,1 1 0 0 0
O 1,2 0 1 0 0
O 2,2 1 0 0 0

J 2

O 3,2 0 1 0 0
O 1,3 0 0 1 0

J 3 O 2,3 0 0 0 1

S ={Si,j,k *IN ∈ /1 ≤ j ≤ N; 1 ≤ i ≤ nj; 1 ≤ k ≤ M}

TLFeBOOK

242 Kacem, Hammadi and Borne

 D = {di,j,k / 1 ≤ j ≤ N; 1 ≤ i ≤ nj; 1 ≤ k ≤ M} Sch = { Sch
 i,j,k / 1 ≤ j ≤ N; 1 ≤ i ≤ nj; 1 ≤ k ≤ M}

 M1 M2 M3 M4
O 1,1 1 3 4 1
O 2,1 3 8 2 1

J 1

O 3,1 3 5 4 7
O 1,2 4 1 1 4
O 2,2 2 3 9 3

J 2

O 3,2 9 1 2 2
O 1,3 8 6 3 5 J 3

 O 2,3 4 5 8 1

 M1 M2 M3 M4
O 1,1 * 0 0 *
O 2,1 0 0 * *

J 1

O 3,1 * 0 * 0
O 1,2 0 * * 0
O 2,2 * * 0 *

J 2

O 3,2 0 * * *
O 1,3 0 0 1 0 J 3

 O 2,3 0 0 0 1

Each case Si,j,k of the assignment S can take 0 or 1 as value:
• Si,j,k =1, means that Oi,j is assigned to the machine M k.
• Si,j,k =0, means that Oi,j is not assigned to the machine M k.

The AL enables us to construct a set of good assignments in balancing the
machines' workloads (Kacem, Hammadi & Borne, 2001, c). We note E the set of
these assignments: E={Sz, such as 1 ≤ z ≤ cardinal(E)}.

2) Resolution of the scheduling problem
The resolution of this problem is based on a modular algorithm called

“Scheduling Algorithm” which calculates the starting times ti,j by taking into account
the availabilities of the machines and the precedence constraints. The conflicts are
solved by applying traditional rules of priority (SPT, LPT, FIFO, LIFO, FIRO…
(Boucon, 1991), thus, we obtain a schedule set according to the applied priority
rules (Kacem, Hammadi & Borne, 2001, c). This set will represent the initial
population used by the Controlled Evolutionary Algorithm (see Figure 1).

3) Generation of an assignment model
The AL enables us to construct a set E of assignments in minimizing the sum

of machines' workloads. The idea is to generate, from the set E, an assignment
schemata that will serve us to control the genetic algorithm. This schemata is going
therefore to represent a constraint which new created individuals must respect. The
construction of this schemata consists od collecting the assignments Sz

(1≤ z≤ cardinal(E)) given by the AL and to determine (for each operation) the set
of possible machines according to a procedure called “Schemata Generation
Algorithm” (Kacem, Hammadi & Borne, 2001, 6). As an example, for the following
Job-shop problem D (with total flexibility), we obtain the schemata Sch as follows:

The value “ Sch
i,j,k = 0” indicates that the assignment of the operation Oi,j to the

machine Mk is forbidden. The value “ Sch
i,j,k = 1” indicates that the assignment of the

operation Oi,j to the machine Mk is obligatory, in this case, all values of the other

TLFeBOOK

Flexible Job-Shop Scheduling Problems 243

 M1 M2 M3 M4
O 1,1 1 X 4 1
O 2,1 X X 2 1

J 1

O 3,1 3 5 4 7
O 1,2 4 1 X X
O 2,2 X 3 9 3

J 2

O 3,2 9 X 2 X
O 1,3 8 6 3 5

J 3 O 2,3 4 X X 1

elements of the row (i, j) are inevitably equal to “0”. The symbol: “ * ” indicates that
the assignment is possible, in this case, we cannot have the value “1” for the other
elements of the row (i, j).

In conclusion, this schemata covers the majority of the interesting assignment
possibilities and avoids expensive prohibitions in terms of machine workloads
(Kacem, Hammadi & Borne, 2001,b).

4) Results given by the AL
The results show that the AL enables us to construct solutions as interesting as

solutions obtained using the classic genetic method (Mesghouni, Hammadi &
Borne, 1997) or the Temporal Decomposition (Chetouane, 1995). The large
advantage of this method is the important reduction of the computation time. In fact,
the assignment procedures localize most interesting zones of the search space. Thus
the scheduling is increasingly easy and becomes more efficient.

In general, the solutions of the previously evoked approach are acceptable and
satisfactory. Therefore, it is worthwhile to investigate possible gains from the
Controlled Evolutionary Algorithm which can be used to produce appropriate
solutions for our problem while the other techniques do not guarantee the optimality
of the final solution.

Remark: Case of a partial flexibility: in this case, some tasks can only be
executed on a part of the available machines set. In the following example, the
symbol “X” indicates that the assignment is impossible:

According to some authors (Mesghouni, Hammadi & Borne, 1997), this
constraint is going to make the problem more difficult, complicate the search space
and increase the computation time. But, in Kacem, Hammadi and Borne (2001, c),
we show that our assignment procedures are applicable too in this case and we have
shown the equivalence between the two problems.

Second Stage: Controlled Evolutionary Approach (CEA)
In this stage, we apply an advanced evolutionary approach on the initial

solution set given by the AL. This approach is based on the application of the

TLFeBOOK

244 Kacem, Hammadi and Borne

schemata theorem. It consists of conceiving a model of chromosomes that suits the
problem. This model is going to serve us in the construction of new individuals in
order to integrate the good properties contained in the schemata. The objective is
to make genetic algorithms more efficient and more rapid in constructing the solution
by giving the priority to the reproduction of individuals respecting the model
generated by the schemata and not from the whole set of chromosomes (Kacem,
Hammadi & Borne, 2001, b).

In the case of scheduling problems, the implementation of this technique
necessitates to elaborate a particular coding that could have described the problem
data and exploited the schemata theorem that we propose in the next paragraph.

1) Modeling
In this paragraph, we present three direct chromosome representations

suitable for the considered problem:
a) Coding 1: Operations-Machines Coding (OMC) (Kacem, Hammadi &

Borne, 2001, b): it consists to represent the schedule in the same assignment
table S. We replace each place Si,j,k=1 by the couple (ti,j, tfi,j) where ti,j is the
starting time and tfi,j is the completion time. The places Si,j,k = 0 are unchanged.
As an example, the following schedule S is a possible solution of the job-shop
problem D (already presented in the second section):

 M1 M2 M3 M4
O 1,1 0 0 0 0, 1
O 2,1 0 0 0 1, 2

J 1

O 3,1 3, 6 0 0 0
O 1,2 0 0, 1 0 0
O 2,2 1, 3 0 0 0

J 2

O 3,2 0 3, 4 0 0
O 1,3 0 0 0, 3 0 J 3

 O 2,3 0 0 0 3, 4

Remark: We use the same example D to explain the different genetic
operators in the next paragraphs.

b) Coding 2: List Operations Coding (LOC) (Kacem, Hammadi & Borne,
2001, a): it consists to represent the schedule in a 3 columns-table. In the first
column we put the operations list (Oi,j). The second indicates the machine Mk
selected to execute the operation Oi,j and the third column is reserved for the
starting and completion times (ti,j, tfi,j). The precedent example can be
represented in LOC as follows on the next page:

TLFeBOOK

Flexible Job-Shop Scheduling Problems 245

 O i,j M k ti,j, tfi,j
O 1,1 4 0, 1
O 2,1 4 1, 2
O 3,1 1 3, 6
O 1,2 2 0, 1
O 2,2 1 1, 3
O 3,2 2 3, 4
O 1,3 3 0, 3
O 2,3 4 3, 4

Task 1 … Task i … Task z
3, 3, 0, 3
2, 2, 0, 1
1, 1, 0, 1

jiji tftkj ,, , , ,

…. ….

Task 1 Task 2 Task 3

1, 4, 0, 1 1, 4, 1, 2 2, 2, 3, 4

2, 2, 0, 1 3, 4, 3, 4 1, 1, 3, 6

3, 3, 0, 3 2, 1, 1, 3 *******

c) Coding 3: Jobs Sequencings List Coding (JSLC) (Kacem, Hammadi &
Borne, 2001,c): it consists in representing the schedule in a table with z
columns, (z = Mjax(nj)). Each column will represent a jobs sequencing in the
form of an N-cells list. Each cell is coded in the following way: (j, k, ti,j, tfi,j):

As an example, the precedent schedule can be presented in JSLC as follows:

Figure 2: Genetic manipulations algorithm

Genetic

Genetic Algorithms for
Optimization Problems

Algorithms with Genetic
Manipulations for Optimization

Genetically Modified

J. Holland Our Approach

TLFeBOOK

246 Kacem, Hammadi and Borne

S: before manipulation S 1: after manipulation
 M1 M2 M3 M4

O 1,1 0 0 0 0, 1
O 2,1 0 0 3, 5 0

J 1

O 3,1 5, 8 0 0 0
O 1,2 0 0, 1 0 0
O 2,2 0 1, 4 0 0

J 2

O 3,2 0 0 0 4, 6
O 1,3 0 0 0, 3 0 J 3

 O 2,3 0 0 0 3, 4

 M1 M2 M3 M4
O 1,1 0 0 0 0, 1
O 2,1 0 0 0 1, 2

J 1

O 3,1 2, 5 0 0 0
O 1,2 0 0, 1 0 0
O 2,2 0 1, 4 0 0

J 2

O 3,2 0 0 0 4, 6
O 1,3 0 0 0, 3 0 J 3

 O 2,3 0 0 0 3, 4

Example: In this example S, the job J1 has the greatest value of the jζ (1ζ =
6 units of time). We have therefore to cover the list of its operations to reduce this
duration. The operation O2,1, can be assigned to the machine M4 instead of the
machine M3 (because d2,1,4<d2,1,3), and thereafter we reduce the 1ζ to5 units of time
and the makespan to 6 units instead of 8. So, we obtain the schedule S1.

The same manipulation can be applied for the JSLC (Kacem, Hammadi &
Borne, 2001, c). In this case, the “Scheduling Algorithm” must be used without
priority rule. For the same example, we obtain the following results:

Manipulation 1
- Select randomly an individual S;
- Choose the job jJ whose Effective Processing Time is the greatest;
- i=1; r = 0;
- WHILE (i ≤ nj And r = 0)

• Find K0 such that Si,j,K0 =1;
• FOR (k=1, k ≤ M)

IF (d i,j,k < d i,j,k0) Then {Si,j,K0 =0; Si,j,K =1; r=1;}
End IF

End FOR
• i=i+1;

 End WHILE
- Calculate starting and completion times according to the algorithm "Scheduling Algorithm."

2) Genetic Manipulations, Crossover and Mutation Operators
a) Genetic Manipulations Operators: these operators of mutation present a

new way of application of the evolutionary algorithms: its the way of “genetic
manipulations.” In genetic biology, these manipulations enable us to generate
GMO (Genetically Modified Organisms). Our method is inspired by this
principle and intervenes in the construction phase of the new chromosomes by
applying the “artificial manipulations” in order to accelerate the convergence
and insure a high quality of final solutions (see Figure 2).

• Manipulation reducing the Effective Processing Time (∑∑ ⋅=
i K

kj,i,kj,i,j dSζ) of a
job Jj :

TLFeBOOK

Flexible Job-Shop Scheduling Problems 247

The same manipulation can be completely applied for the LOC (Kacem,
Hammadi & Borne, 2001, a). Using the same example, we obtain the following
results:

• Manipulation balancing workloads of machines ∑ ∑ ⋅=
j i

kj,i,kj,i,K dSW :

Example: In this example S’, the workload of the critical machine is W4=5
units of time (M4). The less loaded machine is M1 (W1=3 units). We suppose that
the operation O1,1 has randomly been chosen among operations executed on M4.
This operation will be therefore assigned to M1. So, we obtain the schedule Sm2:

 before manipulation after manipulation
Task 1 Task 2 Task 3

1, 4, 0, 1 3, 4, 3, 4 2, 4, 4, 6

2, 2, 0, 1 1, 3, 3, 5 1, 1, 5, 8

3, 3, 0, 3 2, 2, 1, 4 *******

Task 1 Task 2 Task 3

1, 4, 0, 1 3, 4, 3, 4 2, 4, 5, 7

2, 2, 0, 1 1, 4, 4, 5 1, 1, 5, 8

3, 3, 0, 3 2, 2, 1, 4 *******

before manipulation after manipulation

O i,j M K ti,j, tfi,j
O 1,1 4 0, 1
O 2,1 3 3, 5
O 3,1 1 5, 8
O 1,2 2 0, 1
O 2,2 2 1, 4
O 3,2 4 4, 6
O 1,3 3 0, 3
O 2,3 4 3, 4

O i,j M K ti,j, tfi,j
O 1,1 4 0, 1
O 2,1 4 1, 2
O 3,1 1 2, 5
O 1,2 2 0, 1
O 2,2 2 1, 4
O 3,2 4 4, 6
O 1,3 3 0, 3
O 2,3 4 3, 4

Manipulation 2
- Select randomly an individual S;
- Find the most loaded machine Mk1;
- Find the less loaded machine Mk2;
- Choose randomly an operation Oi, j such that S i,j,k1 =1;
- Assign this operation to the less loaded machine: S i,j,k1 =0; S i,j,k2=1;
- Calculate the starting and completion times according to the algorithm "Scheduling Algorithm."

S’: before manipulation Sm2: after manipulation
 M1 M2 M3 M4

O 1,1 0 0 0 0, 1
O 2,1 0 0 0 1, 2

J 1

O 3,1 2, 5 0 0 0
O 1,2 0 0, 1 0 0
O 2,2 0 1, 4 0 0

J 2

O 3,2 0 0 0 4, 6
O 1,3 0 0 0, 3 0 J 3

 O 2,3 0 0 0 3, 4

 M1 M2 M3 M4
O 1,1 0, 1 0 0 0
O 2,1 0 0 0 1, 2

J 1

O 3,1 2, 5 0 0 0
O 1,2 0 0, 1 0 0
O 2,2 0 1, 4 0 0

J 2

O 3,2 0 0 0 4, 6
O 1,3 0 0 0, 3 0 J 3

 O 2,3 0 0 0 3, 4

TLFeBOOK

248 Kacem, Hammadi and Borne

OMC Crossover Algorithm
- Select randomly 2 parents S1 and S2;
- Select randomly 2 integers j and j’ such that j ≤ j’ ≤ N;
- Select randomly 2 integers i and i' such that i ≤ nj and i’ ≤ nj’ (in the case where j=j', i ≤ i’);
- The individual e1 receives the same assignments from the parent S1 for all operations betwee
the rows (i,j) and (i’,j’);
- The remainder of assignments for e1 is obtained from S2;
- The individual e2 receives the same assignments from the parent S2 for all operations betwee
the row (i,j) and the row (i’, j’);
- The remainder of assignments for e2 is obtained from S1;
- Calculate the starting and completion times according to the algorithm "Schedulin
Algorithm."

Workloads are therefore balanced, and the two machines M1 and M4 work
during the same working time W1=W4=4 units of time. The same manipulation can
be applied for the JSLC (Kacem, Hammadi & Borne, 2001, c). In this case, the
“Scheduling Algorithm” must be used without priority rule. For the same example
D, we can obtain the following schedule O2 starting from O1:

The same manipulation can be applied for the LOC (Kacem, Hammadi &
Borne, 2001, a). For the same example, we obtain the following results:

Remark: Other manipulations are derived of this considered one and used to
enhance solutions quality. As an example, we can exchange assignment between the
most loaded machine and another or between the less loaded machine and another.

b) Crossover Operators: These operators are conceived in order to explore
the search space and to offer more diversity by exchanging information
between two individuals.

• OMC Assignment Crossover

O1 O2
Task 1 Task 2 Task 3

1, 4, 0, 1 3, 4, 3, 4 2, 4, 5, 7

2, 2, 0, 1 1, 4, 4, 5 1, 1, 5, 8

3, 3, 0, 3 2, 2, 1, 4 *******

Task 1 Task 2 Task 3
1,1, 0, 1 3, 4, 3, 4 2, 4, 5, 7

2, 2, 0, 1 1, 4, 4, 5 1, 1, 5, 8

3, 3, 0, 3 2, 2, 1, 4 *******

before manipulation after manipulation

O i,j M k ti,j, tfi,j
O 1,1 4 0, 1
O 2,1 4 1, 2
O 3,1 1 2, 5
O 1,2 2 0, 1
O 2,2 2 1, 4
O 3,2 4 4, 6
O 1,3 3 0, 3
O 2,3 4 3, 4

O i,j M k ti,j, tfi,j
O 1,1 1 0, 1
O 2,1 4 1, 2
O 3,1 1 2, 5
O 1,2 2 0, 1
O 2,2 2 1, 4
O 3,2 4 4, 6
O 1,3 3 0, 3
O 2,3 4 3, 4

TLFeBOOK

Flexible Job-Shop Scheduling Problems 249

Example: For S1 and S2 , we suppose that we have randomly chosen j =1,
j’= 2, i = 2, i’=2:

Copying of assignments:

Computation of starting and completion times:

• OMC Vertical Assignment Crossover
It consists of choosing randomly 2 machines (Mk1 and Mk2) and exchanging all

assignments between the two selected machines. That means, if the operation Oi,j
has been already assigned to Mk1, then the same operation will be assigned to Mk2
and vice versa.

Remark: We cannot apply the Vertical Crossover to LOC.

S1: first parent S2: second parent
 M1 M2 M3 M4

O 1,1 0 0 0 0, 1
O 2,1 0 0 0 1, 2

J 1

O 3,1 3, 6 0 0 0
O 1,2 0 0, 1 0 0
O 2,2 1, 3 0 0 0

J 2

O 3,2 0 3, 4 0 0
O 1,3 0 0 0, 3 0 J 3

 O 2,3 0 0 0 3, 4

 M1 M2 M3 M4
O 1,1 0, 1 0 0 0
O 2,1 0 0 0 1, 2

J 1

O 3,1 3, 6 0 0 0
O 1,2 0 0 0, 1 0
O 2,2 1, 3 0 0 0

J 2

O 3,2 0 3, 4 0 0
O 1,3 0 0 1, 4 0 J 3

 O 2,3 0 0 0 4, 5

e1: in construction e2: in construction
 M1 M2 M3 M4

O 1,1 ?, ? 0 0 0
O 2,1 0 0 0 ?, ?

J 1

O 3,1 ?, ? 0 0 0
O 1,2 0 ?, ? 0 0
O 2,2 ?, ? 0 0 0

J 2

O 3,2 0 ?, ? 0 0
O 1,3 0 0 ?, ? 0 J 3

 O 2,3 0 0 0 ?, ?

 M1 M2 M3 M4
O 1,1 0 0 0 ?, ?
O 2,1 0 0 0 ?, ?

J 1

O 3,1 ?, ? 0 0 0
O 1,2 0 0 ?, ? 0
O 2,2 ?, ? 0 0 0

J 2

O 3,2 0 ?, ? 0 0
O 1,3 0 0 ?, ? 0 J 3

 O 2,3 0 0 0 ?, ?

e1: first offspring e2: second offspring
 M1 M2 M3 M4

O 1,1 0, 1 0 0 0
O 2,1 0 0 0 1, 2

J 1

O 3,1 3, 6 0 0 0
O 1,2 0 0, 1 0 0
O 2,2 1, 3 0 0 0

J 2

O 3,2 0 3, 4 0 0
O 1,3 0 0 0, 3 0 J 3

 O 2,3 0 0 0 3, 4

 M1 M2 M3 M4
O 1,1 0 0 0 0, 1
O 2,1 0 0 0 1, 2

J 1

O 3,1 3, 6 0 0 0
O 1,2 0 0 0, 1 0
O 2,2 1, 3 0 0 0

J 2

O 3,2 0 3, 4 0 0
O 1,3 0 0 1, 4 0 J 3

 O 2,3 0 0 0 4, 5

TLFeBOOK

250 Kacem, Hammadi and Borne

O1 O2
Task 1 Task 2 Task 3

1, 4, 0, 1 1, 4, 1, 2 2, 2, 3, 4

2, 2, 0, 1 3, 4, 3, 4 1, 1, 3, 6

3, 3, 0, 3 2, 1, 1, 3 *******

Task 1 Task 2 Task 3
3, 3, 0, 3 2, 4, 1, 4 1, 1, 5, 8

2, 2, 0, 1 3, 4, 4, 5 2, 2, 4, 5

1, 1, 0, 1 1, 3, 3, 5 *******

 e1 e2
Task 1 Task 2 Task 3

1, ?, ?, ? 1, ?, ?, ? 2, ?, ?, ?

3, ?, ?, ? 3, ?, ?, ? 1, ?, ?, ?

2, ?, ?, ? 2, ?, ?, ? *******

Task 1 Task 2 Task 3

3, ?, ?, ? 2, ?, ?, ? 1, ?, ?, ?

1, ?, ?, ? 3, ?, ?, ? 2, ?, ?, ?

2, ?, ?, ? 1, ?, ?, ? *******

• LOC Assignment Crossover
The same crossover operator can be used for the LOC. Using the same

example, we obtain the following results:

• JSLC Sequencing Crossover

We consider the following examples and we suppose that j1=1, j2=2, j3=1:

Exchange of sequencings:

JSLC Sequencing Crossover Algorithm
- Select randomly 2 parents O1 and O2;
- Select randomly z integers { z i1 ,N j i ≤≤≤ };
- For (zi1 ≤≤)

Exchange the sequencing between the parents (corresponding to the task i) using
the same way than 1OX crossover: ij will represent the cut point;

 End For
- The individual e1 receives the same assignments from the parent O1 for all operations;
- The individual e2 receives the same assignments from the parent O2 for all operations;
- Calculate the starting and completion times in applying the algorithm "Scheduling
 Algorithm" according to the sequencing lists (without priority rule).

S1: S2: e1: e2:

O i,j M k ti,j, tfi,j
O 1,1 4 0, 1
O 2,1 4 1, 2
O 3,1 1 3, 6
O 1,2 2 0, 1
O 2,2 1 1, 3
O 3,2 2 3, 4
O 1,3 3 0, 3
O 2,3 4 3, 4

O i,j M k ti,j, tfi,j
O 1,1 1 0, 1
O 2,1 4 1, 2
O 3,1 1 3, 6
O 1,2 3 0, 1
O 2,2 1 1, 3
O 3,2 2 3, 4
O 1,3 3 1, 4
O 2,3 4 4, 5

O i,j M k ti,j, tfi,j
O 1,1 1 0, 1
O 2,1 4 1, 2
O 3,1 1 3, 6
O 1,2 2 0, 1
O 2,2 1 1, 3
O 3,2 2 3, 4
O 1,3 3 0, 3
O 2,3 4 3, 4

O i,j M k ti,j, tfi,j
O 1,1 4 0, 1
O 2,1 4 1, 2
O 3,1 1 3, 6
O 1,2 3 0, 1
O 2,2 1 1, 3
O 3,2 2 3, 4
O 1,3 3 1, 4
O 2,3 4 4, 5

TLFeBOOK

Flexible Job-Shop Scheduling Problems 251

Copying of assignments:

Computation of starting and completion times:

• JSLC Sequencing and Assignment Crossover

Example: We consider the same precedent examples and we suppose that j1=1,
j2=0, j3=1:
Exchange of sequencings and assignments:

 e1 e2
Task 1 Task 2 Task 3

1, 4, ?, ? 1, 4, ?, ? 2, 2, ?, ?

3, 3, ?, ? 3, 4, ?, ? 1, 1, ?, ?

2, 2, ?, ? 2, 1, ?, ? *******

Task 1 Task 2 Task 3

3, 3, ?, ? 2, 4, ?, ? 1, 1, ?, ?

1, 1, ?, ? 3, 4, ?, ? 2, 2, ?, ?

2, 2, ?, ? 1, 3, ?, ? *******

 e1 e2
Task 1 Task 2 Task 3

1, 4, 0, 1 1, 4, 1, 2 2, 2, 3, 4

3, 3, 0, 3 3, 4, 3, 4 1, 1, 3, 6

2, 2, 0, 1 2, 1, 1, 3 *******

Task 1 Task 2 Task 3
3, 3, 0, 3 2, 4, 1, 4 1, 1, 5, 8

1, 1, 0, 1 3, 4, 4, 5 2, 2, 4, 5

2, 2, 0, 1 1, 3, 3, 5 *******

JSLC Sequencing and Assignment Crossover Algorithm
- Select randomly 2 parents O1 and O2;
- Select randomly z integers { z i1 ,N j i ≤≤≤ };
- For (zi1 ≤≤)

Exchange the sequencings and assignments (the couples (j, k)) between
the parents (corresponding to the task i) using the same way than 1OX
crossover: ij will represent the cut point;

 End For
- Calculate the starting and completion times in applying the algorithm
"Scheduling Algorithm" according to the sequencing lists (without priority
rule).

 e1 e2
Task 1 Task 2 Task 3

1, 4, ?, ? 2, 4, ?, ? 2, 2, ?, ?

3, 3, ?, ? 3, 4, ?, ? 1, 1, ?, ?

2, 2, ?, ? 1, 3, ?, ? *******

Task 1 Task 2 Task 3

3, 3, ?, ? 1, 4, ?, ? 1, 1, ?, ?

1, 4, ?, ? 3, 4, ?, ? 2, 2, ?, ?

2, 2, ?, ? 2, 1, ?, ? *******

TLFeBOOK

252 Kacem, Hammadi and Borne

Computation of starting and completion times:

Remark: It has been demonstrated that 1OX crossover preserves the
sequencing propriety (Portmann, 1996), that is why we choose to apply it in our
problem.

c) Random Mutation Operators: these operators represent some random
changes that can be applied on the solutions set in order to avoid premature
convergence.
• Random Sequencing Mutation
This operator is based on exchanging two random chosen couples (j, k) of

twocells belonging to the same column (we do not have to change the assignments
of the considered individual) and computing the starting and completion times using
the algorithm “Scheduling Algorithm” according to the sequencing lists (without
priority rule). It can only be applied in the case of JSLC. The other codings are not
adapted for this kind of transformation.

• Random Assignment Mutation
This operator is based on a random change that we apply on the assignment

Si,j,k of a chosen operation Oi,j on a machine Mk to another Mk’. After this mutation,
we obtain Si,j,k=0 and Si,j,k’=1. The starting and completion times are calculated in
applying “Scheduling Algorithm.” This operator is used with all the three proposed
codings.

3) Remarks
The crossover probabilities are fixed in a traditional way (Pc =0.90). The

remainder of probability is allocated for the random mutation and the genetic
manipulations (with the same rate).

The used selection mechanism gives the priority to the reproduction of the best
individuals according to the global criterion gC . The criteria of stop are the
following:
• The maximum number of the iterations is reached,
• The threshold of satisfaction is reached (1.1 Cg <).

 e1 e2
Task 1 Task 2 Task 3

1, 4, 0, 1 2, 4, 1, 4 2, 2, 4, 5

3, 3, 0, 3 3, 4, 4, 5 1, 1, 5, 8

2, 2, 0, 1 1, 3, 3, 5 *******

Task 1 Task 2 Task 3

3, 3, 0, 3 1, 4, 1, 2 1, 1, 3, 6

1, 4, 0, 1 3, 4, 3, 4 2, 2, 4, 5

2, 2, 0, 1 2, 1, 1, 3 *******

TLFeBOOK

Flexible Job-Shop Scheduling Problems 253

COMPUTATIONAL EXPERIMENTS
Computational experiments are carried out to evaluate the efficiency of our

method with a large set of representative problem instances based on practical data.
The obtained results are summarized in the next paragraphs.

Encoding Performance
Through the description of the different codings and the obtained computa-

tional experiments, many conclusions related to the encoding performance can be
made and are summarized in the following table.

In fact, we can notice a great similarity between OMC and LOC. On the one
hand, all genetic operators are equivalent and can be used for the two proposed
codings. On the other hand, exploration assignment and sequencing search spaces
have the same size too. The only difference is in the representation form. This
difference give more simplicity and more exploration possibilities (vertical cross-
over) for OMC.

Concerning JSLC, although it is relatively difficult to be designed and difficult
to be implemented, this coding represents the most efficient representation. In fact,
it presents the same possibilities of the exploration of the assignment space search
and offers more possibilities to explore the sequencing one. It enables us to consider
jointly or separately the assignment and the scheduling problems and avoid the
limited use of the priority rules; that is why it generally gives the best results.

Encoding performances

 OM C LOC JSLC
Simplicity and
significance

Simple Simple Difficult

Exploration of
sequencings space

Very difficult:
only a single
possibility: the use
of priority rules

Very difficult:
only a single
possibility: the use
of priority rules

Very good

Exploration of
assignments space

Good Good Good

Implementation Easy Easier Difficult
Computation time Correct Correct Correct but needs

more time because
of its complexity

Quality of the
obtained solutions

Good Good Generally the best
solutions

TLFeBOOK

254 Kacem, Hammadi and Borne

2 r 1 = , 4 r 2 = , 93 =r , 6r 4 = , 75 =r , 5 r6 = , 7 r 7 = , 4r 8 = , 1r 9 = and 0 r 10 = .

511.0 w 1 = , 322.0 w 2 = and 167.0 w 3 = .
2 r 1 = , 4 r 2 = , 93 =r , 6r 4 = , 75 =r , 5 r6 = , 7 r 7 = , 4r 8 = , 1r 9 = and 0 r 10 = .

511.0 w 1 = , 322.0 w 2 = and 167.0 w 3 = .

Solutions Quality
In this paragraph, we present numerous examples that we have simulated to

test the approach efficiency. Also, we present the lower bounds values of the
different criteria to give a clear idea of the solution quality. For reasons of
representation simplicity, solutions are presented in LOC:
1) Example1: (little size 4 jobs/12 operations/ 5 machines):

2) Example 2: (middle size 10 jobs/29 operations/ 7 machines):

3 r 1 = , 5 r 2 = , 1 r3 = and 6 r4 = . 1.0 w 1 = , 1.0 w 2 = and 8.0 w 3 = .

Processing times table (Example 1) Obtained solution

 M1 M2 M3 M4 M5
O 1,1 2 5 4 1 2
O 2,1 5 4 5 7 5

J 1

O 3,1 4 5 5 4 5
O 1,2 2 5 4 7 8
O 2,2 5 6 9 8 5

J 2

O 3,2 4 5 4 54 5
O 1,3 9 8 6 7 9
O 2,3 6 1 2 5 4
O 3,3 2 5 4 2 4

J 3

O 4,3 4 5 2 1 5
O 1,4 1 5 2 4 12 J 4
O 2,4 5 1 2 1 2

O i,j M k ti,j, tfi,j

O 1,1 4 3, 4
O 2,1 2 9, 13
O 3,1 4 13, 17
O 1,2 1 7, 9
O 2,2 5 9, 14
O 3,2 1 14, 18
O 1,3 3 1, 7
O 2,3 2 7, 8
O 3,3 4 8, 10
O 4,3 4 17, 18
O 1,4 1 6, 7
O 2,4 2 8, 9

16C*1r = , 7C*2r = and 32C*3r = 18Cr1 = , 8Cr2 = and 32Cr3 =

Processing times table (Example 2) Obtained solution

 M1 M2 M3 M4 M5 M6 M7
O 1,1 1 4 6 9 3 5 2
O 2,1 8 9 5 4 1 1 3

J 1

O 3,1 4 8 10 4 11 4 3
O 1,2 6 9 8 6 5 10 3

J 2 O 2,2 2 10 4 5 9 8 4
O 1,3 15 4 8 4 8 7 1
O 2,3 9 6 1 10 7 1 6

J 3

O 3,3 11 2 7 5 2 3 14
O 1,4 2 8 5 8 9 4 3
O 2,4 5 3 8 1 9 3 6

J 4

O 3, 4 1 2 6 4 1 7 2
O 1, 5 7 1 8 5 4 3 9
O 2,5 2 4 5 10 6 4 9

J 5

O 3,5 5 1 7 1 6 6 2
O 1,6 8 7 4 56 9 8 4
O 2,6 5 14 1 9 6 5 8

J 6

O 3, 6 3 5 2 5 4 5 7
O 1,7 5 6 3 6 5 15 2
O 2,7 6 5 4 9 5 4 3

J 7

O 3,7 9 8 2 8 6 1 7
O 1,8 6 1 4 1 10 4 3
O 2,8 11 13 9 8 9 10 8

J 8

O 3, 8 4 2 7 8 3 10 7
O 1,9 12 5 4 5 4 5 5
O 2,9 4 2 15 99 4 7 3

J 9

O 3,9 9 5 11 2 5 4 2
O 1,10 9 4 13 10 7 6 8
O 2,10 4 3 25 3 8 1 2

J 10

O 3,10 1 2 6 11 13 3 5

O i,j M k ti,j, tfi,j

O 1,1 1 2, 3
O 2,1 5 5, 6
O 3,1 7 12, 15
O 1,2 7 4, 7
O 2,2 1 10, 12
O 1,3 7 9, 10
O 2,3 3 10, 11
O 3,3 5 11, 13
O 1,4 1 6, 8
O 2,4 4 13, 14
O 3, 4 5 14, 15
O 1, 5 2 7, 8
O 2,5 1 8, 10
O 3,5 4 14, 15
O 1,6 3 5, 9
O 2,6 3 9, 10
O 3, 6 3 11, 13
O 1,7 7 7, 9
O 2,7 6 9, 13
O 3,7 6 13, 14
O 1,8 2 4, 5
O 2,8 4 5, 13
O 3, 8 2 13, 15
O 1,9 5 1, 5
O 2,9 2 8, 10
O 3,9 7 10, 12

O 1,10 2 0, 4
O 2,10 6 4, 5
O 3, 10 1 12, 13

15C* 9C* and 60C* 15C 11C and 61C

Continued on next page

TLFeBOOK

Flexible Job-Shop Scheduling Problems 255

O 1,3 15 4 8 4 8 7 1
O 2,3 9 6 1 10 7 1 6

J 3

O 3,3 11 2 7 5 2 3 14
O 1,4 2 8 5 8 9 4 3
O 2,4 5 3 8 1 9 3 6

J 4

O 3, 4 1 2 6 4 1 7 2
O 1, 5 7 1 8 5 4 3 9
O 2,5 2 4 5 10 6 4 9

J 5

O 3,5 5 1 7 1 6 6 2
O 1,6 8 7 4 56 9 8 4
O 2,6 5 14 1 9 6 5 8

J 6

O 3, 6 3 5 2 5 4 5 7
O 1,7 5 6 3 6 5 15 2
O 2,7 6 5 4 9 5 4 3

J 7

O 3,7 9 8 2 8 6 1 7
O 1,8 6 1 4 1 10 4 3
O 2,8 11 13 9 8 9 10 8

J 8

O 3, 8 4 2 7 8 3 10 7
O 1,9 12 5 4 5 4 5 5
O 2,9 4 2 15 99 4 7 3

J 9

O 3,9 9 5 11 2 5 4 2
O 1,10 9 4 13 10 7 6 8
O 2,10 4 3 25 3 8 1 2

J 10

O 3,10 1 2 6 11 13 3 5

O 1,3 7 9, 10
O 2,3 3 10, 11
O 3,3 5 11, 13
O 1,4 1 6, 8
O 2,4 4 13, 14
O 3, 4 5 14, 15
O 1, 5 2 7, 8
O 2,5 1 8, 10
O 3,5 4 14, 15
O 1,6 3 5, 9
O 2,6 3 9, 10
O 3, 6 3 11, 13
O 1,7 7 7, 9
O 2,7 6 9, 13
O 3,7 6 13, 14
O 1,8 2 4, 5
O 2,8 4 5, 13
O 3, 8 2 13, 15
O 1,9 5 1, 5
O 2,9 2 8, 10
O 3,9 7 10, 12

O 1,10 2 0, 4
O 2,10 6 4, 5
O 3, 10 1 12, 13

15C*1r = , 9C*2r = and 60C*3r = 15Cr1 = , 11Cr2 = and 61Cr3 =

3) Example 3: (great size 15 jobs/56 operations/ 10 machines) is located on the next
page. The result for this example is presented in the last of the current subsection.

Values of the different criteria show the efficiency of the controlled genetic
algorithm. In fact, this method enables us to have good results in a polynomial
computation times. This efficiency is explained by the judicious choice of the search
zone (using the AL) and by the contribution of genetic manipulations in the
optimization of solutions.

Although we cannot demonstrate the solution optimality, this method makes
it possible to ensure a good threshold of satisfaction since its solutions are always
very near to the optimal one.

Robustness of the Global Evaluation Function
In this paragraph, we show, by the following example, how the evaluation

function yields satisfactory results according the preferences of the decision-
makers and their weights for each criterion.

Example: We deal with the same “Example 1” already presented in the
precedent paragraph and we vary the preferences of the decision makers (we
remind that the lower bounds are 16C*1r = , 7C*2r = and 32C*3r =), so we obtain the
schedules found on page 257.

These obtained results show the robustness of the form of the proposed
evaluation function. The choice of this function enables us to obtain satisfactory
solutions (1.1 <gC) according to the desired preferences and the associated
weights.

Others Results
• In a previous work, the CEA has been compared to other methods like

Temporal Decomposition (Chetouane, 1995) and Classic Genetic Algorithm

Example 2, continued from previous page

Flexible Job-Shop Scheduling Problems 255

TLFeBOOK

256 Kacem, Hammadi and Borne

(Mesghouni, 1999). In Kacem, Hammadi and Borne (2001, b), we can find
others results about this comparison that confirm the efficiency of the
suggested approach.

• Other results concerning the use of CEA for solving Parallel Machines
Problems (in particular, the case of the flexible JSP) are presented in Kacem,

Processing times table Obtained solution

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
O 1,1 1 4 6 9 3 5 2 8 9 4
O 2,1 1 1 3 4 8 10 4 11 4 3
O 3,1 2 5 1 5 6 9 5 10 3 2

J 1
O 4, 1 10 4 5 9 8 4 15 8 4 4
O 1,2 4 8 7 1 9 6 1 10 7 1
O 2,2 6 11 2 7 5 3 5 14 9 2
O 3,2 8 5 8 9 4 3 5 3 8 1

J 2
O 4,2 9 3 6 1 2 6 4 1 7 2
O 1, 3 7 1 8 5 4 9 1 2 3 4
O 2,3 5 10 6 4 9 5 1 7 1 6
O 3,3 4 2 3 8 7 4 6 9 8 4

J 3
O 4,3 7 3 12 1 6 5 8 3 5 2
O 1, 4 6 2 5 4 1 2 3 6 5 4
O 2,4 8 5 7 4 1 2 36 5 8 5
O 3,4 9 6 2 4 5 1 3 6 5 2

J 4
O 4,4 11 4 5 6 2 7 5 4 2 1
O 1, 5 6 9 2 3 5 8 7 4 1 2
O 2,5 5 4 6 3 5 2 28 7 4 5
O 3,5 6 2 4 3 6 5 2 4 7 9

J 5
O 4,5 6 5 4 2 3 2 5 4 7 5
O 1,6 4 1 3 2 6 9 8 5 4 2

J 6 O 2,6 1 3 6 5 4 7 5 4 6 5
O 1,7 1 4 2 5 3 6 9 8 5 4

J 7 O 2,7 2 1 4 5 2 3 5 4 2 5
O 1,8 2 3 6 2 5 4 1 5 8 7
O 2,8 4 5 6 2 3 5 4 1 2 5
O 3, 8 3 5 4 2 5 49 8 5 4 5

J 8
O 4, 8 1 2 36 5 2 3 6 4 11 2
O 1,9 6 3 2 22 44 11 10 23 5 1
O 2,9 2 3 2 12 15 10 12 14 18 16
O 3,9 20 17 12 5 9 6 4 7 5 6

J 9
O 4,9 9 8 7 4 5 8 7 4 56 2
O 1,10 5 8 7 4 56 3 2 5 4 1
O 2,10 2 5 6 9 8 5 4 2 5 4
O 3,10 6 3 2 5 4 7 4 5 2 1

J 10
O 4,10 3 2 5 6 5 8 7 4 5 2
O 1,11 1 2 3 6 5 2 1 4 2 1
O 2,11 2 3 6 3 2 1 4 10 12 1
O 3,11 3 6 2 5 8 4 6 3 2 5

J 11
O 4,11 4 1 45 6 2 4 1 25 2 4
O 1,12 9 8 5 6 3 6 5 2 4 2
O 2,12 5 8 9 5 4 75 63 6 5 21
O 3,12 12 5 4 6 3 2 5 4 2 5

J 12
O 4,12 8 7 9 5 6 3 2 5 8 4
O 1,13 4 2 5 6 8 5 6 4 6 2
O 2,13 3 5 4 7 5 8 6 6 3 2
O 3,13 5 4 5 8 5 4 6 5 4 2

J 13
O 4,13 3 2 5 6 5 4 8 5 6 4
O 1,14 2 3 5 4 6 5 4 85 4 5
O 2,14 6 2 4 5 8 6 5 4 2 6
O 3,14 3 25 4 8 5 6 3 2 5 4

J 14
O 4,14 8 5 6 4 2 3 6 8 5 4
O 1,15 2 5 6 8 5 6 3 2 5 4
O 2,15 5 6 2 5 4 2 5 3 2 5
O 3,15 4 5 2 3 5 2 8 4 7 5

J 15
O 4,15 6 2 11 14 2 3 6 5 4 8

O i,j M k ti,j, tfi,j

O 1,1 1 15, 16
O 2,1 2 16, 17
O 3,1 3 18, 19
O 4, 1 9 19, 23
O 1,2 4 3, 4
O 2,2 3 11, 13
O 3,2 10 18, 19
O 4,2 4 22, 23
O 1, 3 7 15, 16
O 2,3 9 16, 17
O 3,3 2 20, 22
O 4,3 4 23, 24
O 1, 4 5 4, 5
O 2,4 5 19, 20
O 3,4 6 21, 22
O 4,4 10 22, 23
O 1, 5 9 9, 10
O 2,5 6 16, 18
O 3,5 2 18, 20
O 4,5 4 20, 22
O 1,6 2 13, 14
O 2,6 1 16, 17
O 1,7 1 14, 15
O 2,7 2 15, 16
O 1,8 7 2, 3
O 2,8 8 17, 18
O 3, 8 4 18, 20
O 4, 8 1 20, 21
O 1,9 10 8, 9
O 2,9 3 9, 11
O 3,9 7 16, 20
O 4,9 8 20, 24

O 1,10 10 0, 1
O 2,10 8 15, 17
O 3, 10 10 17, 18
O 4, 10 1 21, 24
O 1,11 7 14, 15
O 2,11 6 15, 16
O 3, 11 3 16, 18
O 4, 11 7 23, 24
O 1,12 8 13, 15
O 2,12 5 15, 19
O 3, 12 6 19, 21
O 4, 12 7 21, 23
O 1,13 2 11, 13
O 2,13 10 13, 15
O 3, 13 10 15, 17
O 4, 13 2 22, 24
O 1,14 1 12, 14
O 2,14 9 14, 16
O 3, 14 8 18, 20
O 4, 14 5 22, 24
O 1,15 1 5, 7
O 2,15 6 7, 9
O 3, 15 3 13, 15
O 4, 15 5 20, 22

 23C*1r = , 10C*2r = and 91C*3r = 24C 1r = , 11C 2r = and 94C 3r =

5 r 1 = , 3 r2 = , 6 r 3 = , 4 r 4 = , 9 r 5 = , 7 r 6 = , 1 r 7 = , 2 r8 = , 8 r 9 = , 0 r 10 = ,
14 r 11 = , 13 r 12 = , 11 r 13 = , 12 r 14 = and 5 r 15 = . 511.0 w 1 = , 322.0 w 2 = and

167.0 w 3 = .

3) Example 3: (great size 15 jobs/56 operations/ 10 machines)

TLFeBOOK

Flexible Job-Shop Scheduling Problems 257

Hammadi and Borne (2001, a) and show the excellent performance of CEA:
for these problems, we obtain Cg ≈ 1 in the majority of cases.

• Concerning convergence speed, in all the tested numerical instances, the
criterion of stop is obtained in a short computation time. At convergence, the
number of iterations is few in most cases (<200). This efficiency is explained
by the reduction of the problem complexity (using the AL) and by the
contribution of the genetic manipulations operators. As an example, we
present the convergence curves of the instances already introduced in the
current section (Example 1, Example 2 and Example 3):

1.0 w 1 = , 5.0 w 2 = and 4.0 w 3 = 8.0 w 1 = , 2.0 w 2 = and 0 w 3 =

O i,j M k ti,j, tfi,j
O 1,1 5 3, 5
O 2,1 2 9, 13
O 3,1 4 13, 17
O 1,2 1 7, 9
O 2,2 5 9, 14
O 3,2 1 14, 18
O 1,3 3 1, 7
O 2,3 2 7, 8
O 3,3 4 8, 10
O 4,3 4 17, 18
O 1,4 1 6, 7
O 2,4 2 8, 9

O i,j M k ti,j, tfi,j

O 1,1 4 3, 4
O 2,1 4 4, 11
O 3,1 5 11, 16
O 1,2 1 5, 7
O 2,2 1 7, 12
O 3,2 3 12, 16
O 1,3 2 1, 9
O 2,3 3 9, 11
O 3,3 1 12, 14
O 4,3 4 14, 15
O 1,4 3 6, 8
O 2,4 2 9, 10

18Cr1 = , 7Cr2 = and 33Cr3 = 16Cr1 = , 9Cr2 = and 40Cr3 =

6.0 w 1 = , 1.0 w 2 = and 3.0 w 3 = 79.0 w 1 = , 01.0 w 2 = and 2.0 w 3 =

O i,j M k ti,j, tfi,j
O 1,1 4 3, 4
O 2,1 5 4, 9
O 3,1 4 10 14
O 1,2 1 5, 7
O 2,2 1 7, 12
O 3,2 3 12, 16
O 1,3 3 1, 7
O 2,3 2 7, 8
O 3,3 1 12, 14
O 4,3 4 14, 15
O 1,4 4 6, 10
O 2,4 2 10, 11

O i,j M k ti,j, tfi,j

O 1,1 4 3, 4
O 2,1 5 4, 9
O 3,1 1 12, 16
O 1,2 1 5, 7
O 2,2 1 7, 12
O 3,2 3 12, 16
O 1,3 3 1, 7
O 2,3 2 7, 8
O 3,3 4 10, 12
O 4,3 4 12, 13
O 1,4 4 6, 10
O 2,4 2 10, 11

16Cr1 = , 10Cr2 = and 36Cr3 = 16Cr1 = , 11Cr2 = and 36Cr3 =

Schedules from the Example on page 255

Convergence Curve: Example 1

1.02
1.04
1.06
1.08

1.1
1.12
1.14

0 100 200 300 400 500

Generation Number

G
lo

ba
l C

ri
te

ri
on

TLFeBOOK

258 Kacem, Hammadi and Borne

Convergence Curve: Example 3

1,05

1,07

1,09

1,11

1,13

1,15

0 50 100 150 200 250 300 350

Generation Number

G
lo

ba
l C

ri
te

ri
on

CONCLUSION
In this chapter, we deal with one of the hardest combinatorial problems (the

flexible JSP) and we propose a new evolutionary approach to solve it.
This approach is based on a controlled evolutionary optimization in which

some efficient direct chromosome representations and advanced genetic operators
are carefully chosen.

The multi-objective evaluation of the solutions quality is reduced to a single
criterion that measures this quality according to the lower bound values of the
different criteria. The theoretical formulas of these lower bounds are presented too.

The obtained results show the efficiency of the proposed approach. Although
it does not guarantee the optimality, this approach provides good quality solutions
in a reasonable time limit. Also, the general aspect of the considered formulation
presents a large methodological advantage that makes it possible to solve other
particular problems like Parallel Machines Problems.

The originality of this approach is in the application of a new biological concept
in the optimization of computing problems. This concept concerns the Genetically

Convergence Curve: Example 2

1,05

1,1

1,15

1,2

1,25

1,3

1,35

0 100 200 300 400 500 600 700

Generation Number

G
lo

ba
l C

ri
te

ri
on

TLFeBOOK

Flexible Job-Shop Scheduling Problems 259

Modified Organisms; thus, we apply genetic manipulations to control the individual's
evolution and reduce the blind aspect of classic genetic algorithm in order to
accelerate the convergence and enhance the final solutions quality.

As future research direction, the study of the other multi-objective consider-
ations in the global evaluation (like Pareto principle (Fonseca, & Fleming, 1998;
Sarker, Abbas & Newton, 2001) seems an interesting subject which can enrich the
proposed approach and give scientific benefits.

ACKNOWLEDGMENT
This work is integrated in the group “TACT” of a regional research program

entitled “MOST” (research group on integrated manufacturing and man-machine
systems). This program is supported by the “Conseil Régional du Nord Pas de
Calais” and the “FEDER.” It involves several laboratories in the north of France.
One of the goals of this program is to increase the competitiveness of industries by
designing new tools and methods.

 Also, we thank in particular Professor Jacques Carlier for giving us interesting
references about his work related to lower bounds for scheduling problems.

REFERENCES
Baghi, S., Uckun, S., Miyab, Y. & Kawamura, K. (1991). Exploring problem-

specific recombination operators for job shop scheduling. Proceedings of
the 4th International Conference on Genetic Algorithms. University of
California, San-Diego, July 13-16, 10-17.

Banzhaf, W., Nordin, P., Keller, R.E. & Francone, F.D. (1998). Genetic
Programming: An Introduction on the Automatic Evolution of Com-
puter Programs and its Application. San Francisco, CA: Morgan Kaufmann.

Boucon, D. (1991). Ordonnancement d’Atelier: Aide au Choix de Règles de
Priorité. Ph D Thesis ENSAE, Toulouse, FRANCE.

Bruns, R. (1993). Direct chromosome representation and advanced genetic
operators for production scheduling. Proceedings of the 5th International
Conference on Genetic Algorithms, University of Illinois at Urbana-
Champaign, July 17-21, 352-359.

Carlier, J. (1989). An algorithm for solving the job shop problem. Management
Science, (35), 164-176.

Carlier, J. & Chretienne, P. (1988). Problèmes d’Ordonnancement: Modélisation
/ Complexité / Algorithmes. Editions Masson.

TLFeBOOK

260 Kacem, Hammadi and Borne

Chetouane, F. (1995). Ordonnancement d’atelier à tâches généralisées, perturba-
tions, réactivité. Rapport de DEA de l’Institut National Polytechnique de
Grenoble.

Dasgupta, D. & Michalewicz, Z. (1997). Evolutionary Algorithms in Engineer-
ing Applications. Berlin: Springer-Verlag.

Della Croce, F., Tadei, R. & Volta, G. (1995). A genetic algorithm for job shop
problem. Computers Ops Res, 22(1), 15-24.

Djerid, L. & Portmann, M-C. (1996). Genetic algorithm operators restricted to
precedent constraints set: Genetic algorithm designs with or without branch
and bound approach for solving scheduling problems with disjunctive con-
straints. Proceedings of the International IEEE/SMC’96 Conference
October, 14-17 Pekin, China.

Fonseca, C.M. & Fleming, P.J. (1998). Multi-objective optimization and multiple
constraint handling with evolutionary algorithms—Part I: Unified formulation.
IEEE Trans/SMC, Part A, 28(1), 26-37.

Garey, M.R. & Johnson, D.S. (1979). Computers and Intractability: A Guide
to Theory of NP-Completeness. New York: W.H. Freeman and Co.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison Wesley.

Golver, F., Taillard, E. & De werra, D. (1993). A user’s guide to tabu search.
Annals of operations research, (41), 3-28.

Kacem, I., Hammadi, S. & Borne, P. (2001, b). Multi-objective optimization for
flexible job-shop scheduling problem: Hybridization of genetic algorithms with
fuzzy logic. Proceedings of IFDICON European Workshop, June 27-29,
Santorini, Gr.

Kacem, I., Hammadi, S. & Borne, P. (2001, b). Direct chromosome represen-
tation and advanced genetic operators for flexible job-shop problems.
Proceedings of CIMCA International Conference, July 9-11, Las Vegas,
Nevada, USA.

Kacem, I., Hammadi, S. & Borne, P. (2001, c). Approach by localization and
genetic manipulations algorithm for flexible job-shop problems. Proceedings
of International IEEE Conference on Systems, Man, and Cybernetics,
October 7-10, Tucson, Arizona, U.S.A. 2599-2604.

Kacem, I., Hammadi, S., & Borne, P. (2002). Bornes inférieures pour les
problèmes d’ordonnancement des job-shops flexibles. CIFA’02, 7-10 July
7-10, Nantes , Fr.

Kirkpatrick, S., Gelatt, C.D. & Vecchi, M.P. (1983). Optimization by simulated
annealing. Sience, 220(4598),671-680.

TLFeBOOK

Flexible Job-Shop Scheduling Problems 261

Mesghouni, K. (1999). Application des Algorithmes Évolutionnistes dans les
Problèmes d’Optimisation en Ordonnancement de la Production. PhD
Thesis, Lille 1 University, Fr.

Mesghouni, K., Hammadi, S. & Borne, P. (1997). Evolution Programs for Job-
Shop Scheduling. Proceedings of IEEE/SMC conference, (1), 720-725.
Orlando, FL.

Portmann, M-C. (1996). Genetic algorithms and scheduling: A state of the art and
some proposition. Proceedings of the Workshop on Production Planning
and Control, September 9-11, Mons, Belgium, p i-xxiv.

Quagliarella, D., Périaux, J., Poloni, C. & Winter, G. (1998). Genetic Algorithms
and Evolution Strategies in Engineering and Computer Sciences. John
Wiley & Sons.

Sarker, R., Abbas, H.A. & Newton, C. (2001). Solving multi-objective optimiza-
tion problems using evolutionary algorithm. Proceedings of International
CIMCA Conference, July 9-11, Las Vegas, Nevada.

Uckun, S., Baghi, S. & Kawamura, K. (1993). Managing genetic search in job-
shop scheduling. IEEE Expert, 8(5), 15-24.

TLFeBOOK

262 Matsumura, Ohkura and Ueda

Chapter XV

The Effect of Multi-Parent
Recombination on Evolution

Strategies for Noisy Objective
Functions

Yoshiyuki Matsumura, Kazuhiro Ohkura and Kanji Ueda
Kobe University, Japan

Copyright © 2003, Idea Group Inc.

ABSTRACT
In this chapter we apply (µ / µ, λ)-ES to noisy test functions, in order to
investigate the effect of multi-parent versions of both intermediate
recombination and discrete recombination. Among the many formulations of
ES, we test three in particular; Classical-ES (CES), i.e., Schwefel’s original
ES (Schwefel, 1995, Bäck, 1996); Fast-ES (FES), i.e., Yao and Liu’s extended
ES (Yao & Liu, 1997); and Robust-ES (RES), i.e., our extended ES (Ohkura,
2001). Computer simulations are used to compare the performance of multi-
parent versions of intermediate recombination and discrete recombination in
CES, FES and RES. We saw that the performance of the (µ / µ, λ)-ES
algorithms depended on the particular objective functions. However, the FES
and RES algorithms were seen to be improved by multi-parent versions of
discrete recombination applied to both object parameters and strategy
parameters.

TLFeBOOK

Noisy Objective Functions 263

INTRODUCTION
Noise is a common phenomenon in many real-world problems. For example,

in the field of information engineering, any signal returned from the real world usually
includes a significant amount of noise. Also in the field of Evolutionary Robotics
(Harvey et al., 1997), simulation models are developed by taking noise into account
in order to decrease the gap between simulated and real-world robot performance
(Jacobi et al., 1995). In such cases, Evolutionary Algorithms (EAs) work well even
in the presence of noise.

EAs have three main approaches, namely Evolutionary Programming (EP),
Evolution Strategies (ES) and Genetic Algorithms (GAs). ES has several formulations
(Schwefel, 1995, Bäck, 1996). (µ / ρ, λ)-ES is the general form for real-valued
parameter optimization problems, in which µ parents generate λ offspring through
recombination and mutation at each generation, and the best µ offspring are
selected deterministically from the λ offspring to replace the current set of parents.
ρ determines the number of parents to form one new offspring, with the case where
ρ>2 known as multi-recombination (Beyer, 2001).

In (µ / ρ, λ)-ES, Beyer (1995) theoretically investigated the case of ρ=µ for
the sphere function, finding a λ-fold speedup compared to ESs without recombination.
For ESs, each individual has a pair of real-valued vectors, i.e., the object
parameters and strategy parameters, with strategy parameters roughly determining
the size of mutation applied to object parameters. Beyer used recombination only
on the object parameters, however it is necessary for ES researchers to investigate
the effect of recombination on not only object parameters but also strategy
parameters, both empirically and theoretically.

There are two popular recombination operators, namely intermediate
recombination and discrete recombination. Many ES researchers (Bäck & Schwefel,
1993, Bäck & Eiben, 1998; Eiben & Bäck, 1998) often apply only intermediate
recombination to strategy parameters due to Schwefel’s general recommendations
(Schwefel, 1995). However, Chang et al. (2001) experimentally investigated multi-
parent versions of both intermediate recombination and discrete recombination on
strategy parameters, and showed the advantages of not only intermediate
recombination but also discrete recombination. They used 11 standard test
functions and tested ES with Gaussian mutation, or Classical-ES (CES). However,
the test functions they used did not incorporate noise. Thus we must investigate the
performance of ESs with multi-parent recombination on noisy test functions in order
to apply ESs to real world optimization problems.

In this chapter we apply (µ / µ, λ)-ES to noisy test functions, in order to
investigate the effect of multi-parent versions of both intermediate recombination
and discrete recombination. Among the many formulations of ESs, we test three in

TLFeBOOK

264 Matsumura, Ohkura and Ueda

particular; CES, i.e., Schwefel’s original ES (Schwefel, 1995; Bäck, 1996); Fast-
ES (FES), i.e., Yao and Liu’s extended ES (Yao & Liu, 1997); and Robust-ES
(RES), i.e., our extended ES (Ohkura, 2001). Computer simulations of (µ / µ, λ)-
ES are conducted using both Gaussian and Cauchy mutation.

RELATED WORKS
Many types of ESs have been applied to noisy objective functions. Beyer

(1993, 1998) analyzed the (1, λ)-ES for the noisy sphere function. Bäck and
Hammel (1994) and Hammel and Bäck (1994) empirically investigated the
performance of the (µ, λ)-ES using discrete recombination on object parameters,
and global intermediate recombination on strategy parameters. Nissen and Propach
(1998) empirically compared the performance of point-based methods, e.g.,
Threshold Accepting and Pattern Search, with population-based methods, e.g., ES
and GA. They employed the same ES as Bäck and Hammel (1994). Gruenz and
Beyer (1999) investigated the (µ / µ, λ)-ES for the noisy sphere function using both
discrete and intermediate recombination on objective parameters, and intermediate
recombination on strategy parameters. Arnold and Beyer (2001) investigated the
(µ / µ, λ)-ES for the noisy sphere function using intermediate recombination; while
different kinds of recombination were applied to object parameters, only intermediate
recombination was applied to strategy parameters.

In this chapter we empirically investigate the (µ / µ, λ)-ES using both
intermediate recombination and discrete recombination, applied to both object
parameters and strategy parameters.

EVOLUTION STRATEGIES ALGORITHMS
Classical Evolution Strategies (CES)

The Classical ES (CES) algorithms adopted in this chapter are described as
follows (Schwefel, 1995; Bäck, 1996):
1. Generate an initial population of ¼ individuals, and set g=1. Each individual is

taken as a pair of real-valued vectors (xi, ηηηηηi), where xi and ηηηηηi are the i-th
coordinate value in R and its strategy parameters (larger than zero), respectively.

2. Evaluate the objective value for each individual (xi, ηηηηηi) in the population, based
on the objective function f(xi).

3. Each parent (xi, ηηηηηi), i =1,…, µ, creates λ / µ offspring on average, so that a
total of λ offspring are generated. At that time, offspring are calculated as
follows: for i =1, …, µ, j =1, …, n, and p=1, …, λ

TLFeBOOK

Noisy Objective Functions 265

ηp(j) = ηi(j)exp{τ’N(0,1)+τNj(0,1)} (1)

xp(j) = xi(j)+ηp(j)Nj(0,1) (2)

where xi(j), xp(j), ηi(j) and ηp(j) denote the j-th component values of the
vectors xi, xp, ηηηηηi and ηηηηηp, respectively. N(0,1) denotes a normally distributed
one- dimensional random number with mean zero and standard deviation one.
Nj(0,1) indicates that the random number is generated anew for each value of
j. The factors τ and τ’ are commonly set to constant (Bäck, 1996). Various
types of recombination operators can also be applied before calculating
Equations (1) and (2).

4. Calculate the fitness of each offspring (x’i, ηηηηη’i), according to f(x’i).
5. Sort offspring (x’i, ηηηηη’i) according to their fitness values, and select the µ best

offspring out of λ to be parents of the next generation.
6. Stop if the halting criterion is satisfied; otherwise, g=g+1 and go to Step 3.

Fast Evolution Strategies (FES)
Yao and Liu (1997) proposed the Fast ES (FES) algorithm variant of (µ, λ)-

ES. In FES, the Gaussian mutation (Step 3 above) is replaced by Cauchy mutation,
using the following Cauchy distribution function:

Ft(x) = 1/2+(1/π) arctan(x/t) (3)

where t =1. The success of FES is explained as a result of a larger probability of
escaping from local optima, due to the fatter convergence trails of the Cauchy
mutation operator. In other words the Cauchy distribution has a higher probability
than the Gaussian distribution of producing large mutations. Yao and Liu (1997)
conducted empirical experiments using a number of test functions, demonstrating
an improvement in performance especially on multi-modal problems.

Robust Evolution Strategies (RES)
When ESs are applied to an optimization problem successfully, the observed

evolutionary dynamics show qualitatively similar behavior to that of other evolutionary
algorithms: over generations the focus of the search shifts from global regions to
smaller local regions. This arises from the gradual convergence of the population
due to the direct effects of natural selection. Associated with this, the strategy
parameters ηηηηηi tend to zero. This is the process of “self-adaptation,” which is
considered to be one of the major attractive features of ES. This may be useful for
unimodal functions, however in many multi-modal functions, ESs are often trapped
in local optima.

TLFeBOOK

266 Matsumura, Ohkura and Ueda

Robust-ES (RES) (Ohkura, 2001) was designed to avoid this problem of
entrapment. The key idea of RES is to utilize selectively neutral mutations (Kimura,
1983) on strategy parameters so that the algorithm is capable of rapidly increasing
or decreasing strategy parameters, irrespective of natural selection. RES follows
the same procedure as CES or FES except for the following two points:
• A different individual representation is used, incorporating redundant strategy

parameters, i.e., inactive strategy parameters, which have no effect on the
selection process.

• Extra stochastic mutation mechanisms are used to change the original strategy
parameters. These mutations replace, swap or copy active strategy parameters
with inactive strategy parameters.

An individual Xi is represented as follows, assuming that i=1,2,…, µ,
j=1,2,…,n, k=0,1,…,m:

Xi = [xi,(ηηηηηi0,…,ηηηηηik,…,ηηηηηim)] (4)

xi = (xi(1),…,xi(j),…,xi(n)) (5)

ηηηηηik = (ηik(1),…,ηik(j),…,ηik(n)) (6)

where xi(j) and ηik(j) denote the j-th component values of the vectors xi and ηηηηηik,
respectively. Note that each xi(j) has (m+1) strategy parameters.

We define D as same the mutation mechanism given in Equation (1). In
addition, ηηηηηik is modified stochastically, according to the following new mutation
operators:
- Odup shifts all of ηik(j) into the adjacent position of (k +1) and removes ηim(j)

from the list. Then, Odup mutates all ηηηηηik with D.
- Odel discards ηi0(j) and moves ηik(j) to the adjacent position of (k- 1). At

the m-th position ηL is calculated as the smaller value either ηmax or Σηip(j).
Then, Odel mutates all ηηηηηik with D.

- Oinv swaps ηi0(j) with one of ηik(j), k = 1, …,m and mutates ηi0(j) and ηik(j)
with D.

Note that RES using Gaussian mutation is referred to as gRES, and RES using
Cauchy mutation is referred to as cRES. When the probabilities of Odup, Odel and
Oinv are set at 1.0, 0.0 and 0.0, gRES and cRES are equivalent to CES or FES,
respectively.

TLFeBOOK

Noisy Objective Functions 267

Multi-Parent Recombination
Typically, recombination operators have been investigated empirically, due to

their mathematical intractability. Traditional recombination operators reproduce
one offspring using two parents, however more recent work tends to use the multi-
parent versions of recombination operators. Where the multi-parent version of
intermediate recombination is applied to both the object parameters and strategy
parameters, the recombination operator is known as “Multi-Parent Intermediary
Recombination.” Where the multi-parent version of discrete recombination is
applied to both the object parameters and strategy parameters, it is known as
“Multi-Parent Discrete Recombination” and “Global Combined Discrete
Recombination” (Chang et al., 2001).

Multi-Parent Intermediary Recombination
Intermediate recombination is some kind of averaging across parent solutions.

This can be formulated as follows:

η’ik(j) = ∑
=

µ

µ 1

1
i

ηik(j) (7)

x’i(j) = ∑
=

µ

µ 1

1
i

xi(j) (8)

Following Chang et al. (2001), this type of recombination is referred to as II.

Multi-Parent Discrete Recombination
In discrete recombination, the j-th component of the offspring is equal to the

j-th component from a randomly selected parent:

η’ik(j) = ηyjk(j) (9)

x’i(j) = xy’j(j) (10)

yj and y’j denote uniformly distributed random integers in {1,..., µ}, respectively,
and are generated anew for each value of j. Following Chang et al. (2001), this type
of recombination is referred to as DD.

TLFeBOOK

268 Matsumura, Ohkura and Ueda

Global Combined Discrete Recombination
Multi-parent discrete recombination is separately applied to object parameters

and strategy parameters in the DD-ES introduced above. However, the two
parameter sets may be strongly coupled to each other, as the strategy parameters
determine the mutability of object parameters. Due to this possibility, a new
recombination which regards a pair of an object parameter and a strategy
parameter as a unit of recombination, can be formulated as follows:

η’ik(j) = ηyjk(j) (11)

x’i(j) = xyj(j) (12)

Following Chang et al. (2001), this type of recombination is referred to as D.

COMPUTER SIMULATION
Test Functions and Conditions

Following Bäck and Hammel (1994) and Hammel and Bäck (1994), we
calculate the noisy objective function F(xi) at each generation as follows:

F(xi) = f(xi) + σNi(0,1) (13)

where the test functions f(xi) are Sphere Model (f1), Ackley’s Function (f2) and
Generalized Rastrigin’s Function (f3) (Table 1). All the test functions define 30
dimensional problems (n=30) with f1 a unimodal functions, and f2 and f3 multi-
modal functions. Ni(0,1) denotes a normally distributed n-dimensional random
number with mean zero and standard deviation one which is generated anew for
each value of i. σ is the noise level, and set it at either 0.0, 0.001, 0.01, 0.1 or 1.0.

Table 1: Test functions

TLFeBOOK

Noisy Objective Functions 269

The experimental setup is based on Yao and Liu (1997): (µ, λ)=(30, 200) with
Gaussian mutation or Cauchy mutation, recombination and no correlated mutations.
CES, FES and RES use the same initial populations, and all simulations are
independently repeated for 50 runs. The upper bound of strategy parameters ηmax
is set at 3.0 for f1 and f2 and 1.0 for f3. In RES, the number of inactive strategy
parameters m for each variable is set at 5. Odup, Odel and Oinv are applied with
the probabilities of 0.6, 0.3 and 0.1, respectively. The main purpose of our
computer simulations is to investigate the effect of multi-parent recombination on
ESs for noisy objective function. Thus, the parameters are not fully tuned.

Results
The averaged best function values of CES, gRES, FES and cRES when

applied to the sphere model f1 are shown in Figure 1 to Figure 4 for the five different
noise levels, 0.0, 0.001, 0.01, 0.1 and 1.0. These results clearly demonstrate that
the different multi-parent recombination operators have a different effect on the
different types of ES. In Figure 1(a), CES does not find function values less than 1.0.
In Figure 1(b), (c) and (d), II-CES, DD-CES and D-CES can find function values
less than 1e-10 even in the presence of noise. These results suggest that three multi-
parent recombination operators, i.e., II, DD and D recombination, improve the
performance of CES on f1. In Figure 2(a), gRES does not find function values less
than 0.01 except when the noise level is either 0.1 or 1.0. In Figure 2(b), II-gRES
does not evolve in the early generations. In Figure 2(c) and (d), DD-gRES and D-
gRES can find function values less than 1e-10. These results suggest that gRES on
f1 prefers DD and D recombination to II recombination. In Figure 3 and Figure 4,
FES and cRES show the same tendencies as gRES on f1, with both preferring DD
and D recombination to II recombination.

The averaged best function values of CES, gRES, FES and cRES when
applied to Ackley’s function f2 are shown in Figure 5 to Figure 8 for the five different
noise levels, 0.0, 0.001, 0.01, 0.1 and 1.0. The results are different from f1 for all
noise levels. In Figure 5 (a), CES does not find function values less than 1.0. In
Figure 5 (b), II-CES can find function values less than 1e-10 except when the noise
level is 1.0. In Figure 5 (c) and (d), DD-CES and D-CES can find function values
less than 1e-10. These results suggest that CES on f2 prefers DD and D
recombination to II recombination. In Figure 6, gRES on f2 shows the same
tendencies as gRES on f1, preferring DD and D recombination to II recombination.
In Figure 7(a) and (b), FES does not find function values less than 1.0. In Figure
7(c) and (d), DD-FES and D-FES can find function values less than 1e-10 except
when the noise level is 1.0. These results suggest that FES on f2 prefers DD and
D recombination to II recombination. In Figure 8(a) and (b), cRES does not find
function values less than 0.1. In Figure 8(c), DD-cRES can find function values less

TLFeBOOK

270 Matsumura, Ohkura and Ueda

Figure 1 and Figure 2: Averaged best results for f1when the noise level is 0.0,
0.001, 0.01, 0.1 and 1.0

(a) CES (a) gRES

(b) II-CES (b) II-gRES

(c) DD-CES (c) DD-gRES

(d) D-CES (d) D-gRES

TLFeBOOK

Noisy Objective Functions 271

Figure 3 and Figure 4: Averaged best results for f1when the noise level is 0.0,
0.001, 0.01, 0.1 and 1.0

(a) FES (a) cRES

(b) II-FES (b) II-cRES

(c) DD-FES (c) DD-cRES

(d) D-FES (d) D-cRES

TLFeBOOK

272 Matsumura, Ohkura and Ueda

Figure 5 and Figure 6: Averaged best results for f2when the noise level is 0.0,
0.001, 0.01, 0.1 and 1.0

(a) CES a) gRES

(b) II-CES (b) II-gRES

(c) DD-CES (c) DD-gRES

(d) D-CES (d) D-gRES

TLFeBOOK

Noisy Objective Functions 273

Figure 7 and Figure 8: Averaged best results for f2 when the noise level is 0.0,
0.001, 0.01, 0.1 and 1.0

(a) FES (a) cRES

(b) II-FES (b) II-cRES

(c) DD-FES (c) DD-cRES

(d) D-FES (d) D-cRES

TLFeBOOK

274 Matsumura, Ohkura and Ueda

Figure 9 and Figure 10: Averaged best results for f3when the noise level is 0.0,
0.001, 0.01, 0.1 and 1.0

(a) CES (a) gRES

(b) II-CES (b) II-gRES

(c) DD-CES (c) DD-gRES

(d) D-CES (d) D-gRES

TLFeBOOK

Noisy Objective Functions 275

Figure 11 and Figure 12: Averaged best results for f3 when the noise level is
0.0, 0.001, 0.01, 0.1 and 1.0

(a) FES (a) cRES

(b) II-FES (b) II-cRES

(c) DD-FES (c) DD-cRES

(d) D-FES (d) D-cRES

TLFeBOOK

276 Matsumura, Ohkura and Ueda

than 1e-10 except when the noise level is either 0.0, 0.1 or 1.0. In Figure 8(d), D-
cRES can find function values less than 1e-10 except when the noise level is either
0.0 or 1.0. These results suggest that cRES on f2 prefers D recombination to II and
DD recombination.

The averaged best function values of CES, gRES, FES and cRES when
applied to the generalized Rastrigin’s function f3 are shown in Figure 9 to Figure 12
for the five different noise levels, 0.0, 0.001, 0.01, 0.1 and 1.0. These results are
different from f1 and f2 due to cases where the ESs are trapped in local optima. In
Figure 9(a), CES does not find function values less than 10.0. In Figure 9(b), II-
CES does not evolve at all. In Figure 9(c) and (d), DD-CES and D-CES get
trapped in local optima. These results suggest that CES on f3 prefers DD and D
recombination to II recombination. In Figure 10, gRES on f3 shows the same
tendencies as gRES on f1 and f2, preferring DD and D recombination to II
recombination. In Figure 11, FES shows same tendencies as CES on f3, preferring
DD and D recombination to II recombination. In Figure 12(a), cRES does not find
function values less than 10.0. In Figure 12(b), II-CES does not evolve at all. In
Figure 12(c), DD-cRES can find function values less than 1e-9. In Figure 12(d),
D-cRES can find function values less than 1e-10 except when the noise level is 0.0.
These results suggest that cRES on f3 prefers DD recombination to II and D
recombination.

Table 2 summarizes the results for all algorithms over all three noisy test
functions f1, f2, f3. An "x" indicates that the algorithm failed to evolve at all, a triangle

Table 2: Summary of experiments

indicates that the algorithm found only poor solutions, while a circle indicates that
the algorithm found good solutions in reasonable time. As can be seen, the DD and
D recombination shows improvement over the II recombination in almost all cases.

CONCLUSIONS
We have empirically investigated the effect of multi-parent recombination over

three versions of the (µ / µ, λ)-ES algorithm with noisy objective functions.
Computer simulations were used to compare the performance of multi-parent
versions of intermediate recombination and discrete recombination in CES, FES
and RES. We saw that the performance of the (µ / µ, λ)-ES algorithms depended

 CES GRES FES cRES
 II DD D II DD D II DD D II DD D

f1
f2
f3

∈

∈

∈
∈

∈
∈
∈

∈
∈
∈

TLFeBOOK

Noisy Objective Functions 277

on the particular objective functions. However, the FES, gRES and cRES
algorithms were seen to be improved by multi-parent versions of discrete
recombination applied to both object parameters and strategy parameters, i.e., DD
recombination and D recombination are better than II recombination.

ACKNOWLEDGMENT
We would like to thank Tom Smith, CCNR, University of Sussex, for his

proofreading, and Matt Quinn, CCNR, University of Sussex, for his kindness. The
first author acknowledges financial support through JSPS (the Japan Society for the
Promotion of Science) Research Fellowship for Young Scientists (200004999).

REFERENCES
Arnold, D.V. & Beyer, H.G. (2000). Efficiency and mutation strength adaptation

of the (µ/ µI, λ)-ES in a noisy environment, Proceedings of the 6th
Conference on Parallel Problem Solving from Nature -PPSN VI, Lecture
Notes in Computer Science, vol. 1917, 39-48, Springer.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice, Oxford
University Press.

Bäck, T. & Eiben, A.E. (1999). Generalizations of intermediate recombination in
evolution strategies. Proceedings of Congress on Evolutionary Computa-
tion (CEC’99), 1566-1573, IEEE Press.

Bäck, T. & Hammel, U. (1994). Evolution strategies applied to perturbed
objective functions. Proceedings of the First IEEE Conference on Evolu-
tionary Computation, 40-45, IEEE Press.

Bäck, T. & Schwefel, H.P. (1993). An overview of evolutionary algorithms for
parameter optimization, Evolutionary Computation, 1(1), 1-23.

Beyer, H.-G. (1993). Toward a theory of evolution strategies: Some asymptotical
results from the (1, +λ)-theory, Evolutionary Computation, 1(2), 165–
188.

Beyer, H.-G. (1995). Toward a theory of evolution strategies: On the benefits of
(µ / µ, λ)-theory, Evolutionary Computation, 3(1), 81–111.

Beyer, H.-G. (1998). Mutate large, but inherit small! On the analysis of rescaled
mutations in (1, λ)-ES with noisy fitness data, Proceedings of 5th Confer-
ence on Parallel Problem Solving from Nature -PPSN V, 109-118,
Springer.

Beyer, H.-G. (2001). The Theory of Evolution Strategies, Springer.
Chang, M., Ohkura, K. & Ueda, K. (2001). Some experimental observation of (µ

TLFeBOOK

278 Matsumura, Ohkura and Ueda

/ µ, λ)-evolution strategies. Proceedings of the Congress on Evolutionary
Computation (CEC’01), 663-670, IEEE Press.

Eiben, A.E. & Bäck, T. (1998), Empirical investigation of multi-parent recombi-
nation operators in evolution strategies. Evolutionary Computation, 5(3),
347-365.

Gruenz, L. & Beyer, H.G. (1999). Some observations on the interaction of
recombination and self-adaptation in evolution strategies, Proceedings of the
Congress on Evolutionary Computation (CEC’99), 639-645, IEEE
Press.

Hammel, U. & Bäck, T. (1994). Evolution strategies on noisy functions: How to
improve convergence properties, Proceedings of the 3rd Conference on
Parallel Problem Solving from Nature—PPSN III, Lecture Notes in
Computer Science, vol. 866, 418-427, Springer.

Harvey, I., Husbands, P., Cliff, D., Thompson, A. & Jakobi, N. (1997). Evolution-
ary robotics: The Sussex approach, Robotics and Autonomous Systems,
vol. 20, 205-224.

Jacobi, N., Husbands, P. & Harvey, I. (1995). Noise and the reality gap: The use
of simulation in evolutionary robotics, Proceedings of the Third European
Conference on Artificial Life (ECAL95), 704-720, Springer.

Kimura, M. (1983), The Neutral Theory of Molecular Evolution, Cambridge
University Press.

Nissen, V. & Propach, J. (1998). Optimization with noisy function, Proceedings
of the 5th Conference on Parallel Problem Solving from Nature—PPSN
V, Lecture Notes in Computer Science, vol. 1498, 159-168, Springer.

Ohkura, K., Matsumura, Y. & Ueda, K. (2001), Robust evolution strategies,
Applied Intelligence, 15(3),153-169, Kluwer Academic Publishers.

Schwefel, H.-P. (1995), Evolution and Optimum Seeking, John Wiley & Sons.
Yao, X. & Liu, Y. (1997), Fast evolution strategies, Control and Cybernetics,

26(3), 467-496.

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 279

Chapter XVI

On Measuring the Attributes
of Evolutionary Algorithms:
A Comparison of Algorithms

Used for Information
Retrieval

J. L. Fernández-Villacañas Martín
Universidad Carlos III, Spain

 P. Marrow and M. Shackleton
Intelligent Systems Laboratory, BTextract Technologies, UK

Copyright © 2003, Idea Group Inc.

ABSTRACT
In this chapter we compare the performance of two contrasting evolutionary
algorithms addressing a similar problem, of information retrieval. The first,
BTGP, is based upon genetic programming, while the second, MGA, is a
genetic algorithm. We analyze the performance of these evolutionary algorithms
through aspects of the evolutionary process they undergo while filtering
information. We measure aspects of the variation existing in the population
undergoing evolution, as well as properties of the selection process. We also
measure properties of the adaptive landscape in each algorithm, and quantify
the importance of neutral evolution for each algorithm. We choose measures
of these properties because they appear generally important in evolution. Our

TLFeBOOK

280 Fernández-Villacañas Martín, Marrow and Shackleton

results indicate why each algorithm is effective at information retrieval,
however they do not provide a means of quantifying the relative effectiveness
of each algorithm. We attribute this difficulty to the lack of appropriate
measures available to measure properties of evolutionary algorithms, and
suggest some criteria for useful evolutionary measures to be developed in the
future.

INTRODUCTION
Evolutionary methods have been the focus of much attention in computer

science, principally because of their potential for performing a partially directed
search in very large combinatorial spaces (Sloman, 1998). Evolutionary algorithms
(EAs) have the potential to balance exploration of the search space with exploitation
of useful features of that search space. However the correct balance is difficult to
achieve and places limits on what can be predicted about the algorithm’s behaviour.
In addition, EAs are often implemented in system-specific ways, making it very
difficult to predict and evaluate performance on different implementations. This
makes the need for measures to evaluate and compare different algorithms all the
more urgent.

In this chapter we focus upon the comparison between algorithms for
information retrieval. This is one of the tasks at which evolutionary algorithms have
been found particularly effective. Such algorithms deal with the situation where a
relevant sub-set of documents or records must be isolated from a larger pool. This
chapter considers two such algorithms which were developed for the task of
information filtering in a telecommunications context. The BTGP is a genetic
programming system where the programs produced execute Boolean searches
through keywords (Fernández-Villacañas & Exell, 1996). The MGA is a genetic
algorithm which also uses a Boolean tree representation, through a relatively
complicated mapping between genotype and phenotype.

We compare the performance of these algorithms using a collection of
measures chosen from consideration of evolutionary processes. Such measures
have been developed within an evolutionary computation context and also within
evolutionary biology. To understand why such measures might be useful, we first
consider the evolutionary process itself.

Evolution can be described as “...any net directional change or any
cumulative change in the characteristics of organisms or populations over
many generations ...” (Endler, 1986).

But this evolutionary change may occur as the consequence of a number of
different processes, acting to differing extent. Comparison of biological and

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 281

computational evolution shows the importance of three classes of phenomena in
making natural and artificial evolutionary systems evolvable. These are variation,
selection and adaptive landscape structure.

The existence of variation is crucially important for evolutionary processes
because there would otherwise be no possibility for the selection scheme to exploit
the search space. Measuring the amount of variation gives an indication of the
potential of the population to be selected, although it does not of course tell about
the potential of the population to vary in the future. Ideally we need to know about
the propensity of the population to vary in the future in order to get a full picture of
the evolvability of the system. This distinction between the amount of variation and
the variability of a population has been emphasized, in the context of evolvability by
Wagner and Altenberg (1996).

Variation may be measured through genetic variance, which can be calculated
provided it is possible to set values on the different genetic variants present (Falconer,
1989; Lynch & Walsh, 1998). Depending on the evolutionary algorithm under
consideration, it may be more appropriate to take a phenotypic variance measure,
as the representation of the genotype in the phenotype may crucially affect the way
in which available variation influences the selective process. The method of
measurement of phenotypic variation will depend upon the representation used.

Mutation is an important means of generating further variation, and acts in part
to counteract the loss of variation through selection. It must therefore be important
for evolvability. It is with this in mind that Wagner and Altenberg (1996) have
proposed mutational variance, the variation in effect of possible mutants that can
arise in a population, as a measure of the evolvability or evolutionary performance
of a system. While mutation variance may be very difficult to calculate in natural
populations, it is at least in principle derivable for a given evolutionary algorithm.

While variation may be essential for evolutionary change, it is also the case that
some means of searching through the variation is necessary for the evolutionary
algorithm to have some practical application. Most frequently this means some sort
of selection or evaluation function applied to the population of each generation,
which allows only a subset to reproduce. Fortunately there is already a large
literature dealing with the properties and performance of selection
functions (Altenberg, 1994, 1995; Blickle & Thiele, 1997; Manderick et al., 1991;
Mühlenbein & Sclierkamp-Voosen, 1993; Mühlenbein, 1998). We can also draw
upon the theoretical tools for the analysis of natural and artificial selection which
have been developed by quantitative geneticists and animal breeders (Falconer,
1989; Lynch & Walsh, 1998; Roff, 1998).

There are a wide range of measures which have been used to characterize
selection (Brodie et al., 1995; Blickle & Thiele, 1997). In this study we focus on
two measures which indicate important features of selection; it will be possible to

TLFeBOOK

282 Fernández-Villacañas Martín, Marrow and Shackleton

extend this analysis to other measures in the future. The first, opportunity for
selection (derived from Crow, 1958; Arnold & Wade, 1984), measures the
potential of a population to respond to selection. The second, called here intensity
of selection (although this term has been applied to other measures, e.g., Brodie et
al., 1995; Endler, 1986) measures the strength of selection on characters under
selection. These measures allow us to build up a comparative picture of the nature
of selection in different systems.

Variation and selection do not provide a complete picture of evolutionary
progress; we also need to know something about the process of adaptation. The
metaphor of the adaptive landscape has provided a useful means of studying the
process of adaptation and has led to a large range of measures of evolutionary
processes (Gavrilets, 1997; Hordijk, 1992; Kauffman, 1993). A central problem
with the view of evolution taking place on an adaptive landscape is that selection is
envisaged as driving populations up gradients of increasing fitness. Any reasonably
complex adaptive landscape, with multiple fitness peaks, will result in populations
reaching local optima below the global optimum, from which they cannot escape.
It is therefore useful to obtain measures of the likelihood of transitions on the
adaptive landscape leading to fitness increase, as these may give an indication of the
likelihood of adaptation proceeding without the population being stuck in local
maxima. In this chapter we implement a variant of epistasis variance (after Davidor,
1991), which may give such an indication. We also measure the proportion of
mutants fitter than the current variant.

Escape from local maxima may also be possible through the intermediary of
adaptively neutral mutations, which may change the genome without changing the
individual’s fitness, and thus create the circumstances in which further advantageous
mutants can invade. There has been much interest in neutral evolution as a facilitator
of adaptive change in recent evolutionary computation research (Schuster, 1996).
Our aim here is not to focus specifically on this area of study, but to quantify in a
simple way the potential for neutral change. We do this by calculating the proportion
of neutral mutants that are possible; this allows us to establish further the properties
of the adaptive landscape.

We are thus able to apply measures of variation, of selection and of properties
of adaptive landscapes to two different evolutionary algorithms developed to solve
equivalent problems. This allows us to gain insights into the evolutionary process
as each algorithm converges to a solution, and to identify the most effective features
of each algorithm.

There are many more measures that could be applied to the evolutionary
algorithms BTGP and MGA: our choice of measures here was dictated by
relevance to some of the most important components of the evolutionary process,
and feasibility of implementation in the given algorithms. However the need to

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 283

understand the evolutionary process in EAs is sufficiently urgent to suggest that
research involving measurement of evolutionary phenomena is essential in the
development of EAs for real-world applications. As Mitchell and Forrest (1995),
discussing the relation of genetic algorithms to artificial life, write: “ ...the
formulation of macroscopic measures of evolution and adaptation, as well as
descriptions of the microscopic mechanisms by which the macroscopic
quantities emerge, is essential if artificial life is to be made into an explanatory
science ...” and “...we consider it an open problem to develop adequate
criteria and methods for evaluating artificial life systems.” Their comments still
apply strongly to evolutionary computation and artificial life.

The outline of the chapter is as follows. After this introduction, we introduce
the evolutionary measures that we will be using, and explain their derivation. Later
we give the details of the two algorithms we consider, MGA and BTGP. Another
sections follows with the definition of the problem which the algorithms are used to
solve, information retrieval. Furthermore, the implementation-specific features of
the measures we have used are presented. We also present the results of applying
the above measures, and interpret these results in the context of each algorithm.
Finally, we draw conclusions regarding the performance of each algorithm relative
to the other, and suggest some guidelines regarding the definition of measures for
more general evolutionary algorithms.

EVOLUTIONARY MEASURES
The performance of an EA is a balance between the exploration of its search

space and the exploitation of features of the same space (Holland, 1992), such as
local minima. We have identified a number of parameters that are representative
of features of the evolutionary process, in particular features that affect, or are
consequences of the balance between exploration and exploitation. These features
are:

MEASURES OF VARIATION
Genetic Diversity

This measures the amount of variation among the genotypes present in a
population. Some variation is essential for an evolutionary algorithm, for without it
selection cannot take place. This measure of diversity depends upon the search
space being represented in a gene string or equivalent. Since both BTGP and MGA
depend upon such a representation, this measure is appropriate. We use a measure
of genetic diversity, rather than the more usual genetic variance, because of the

TLFeBOOK

284 Fernández-Villacañas Martín, Marrow and Shackleton

greater difficulty involved in deriving genetic variance in this computational context.
Measurement of genetic variance in a biological population is discussed by Falconer
(1989); calculation of genetic variance in EAs will depend upon the representation.

Mutation Variance
This measures the potential degree of variation in magnitude of mutation effect.

Such a measure assumes that mutation effect can be quantified on an ordinal scale.
Mutational variance gives an indication of the extent to which mutation can explore
the search space. It has been proposed as a measure of the performance of
evolutionary systems by Wagner and Altenberg (1996). The actual, as opposed to
potential, variation in effect among mutants will depend upon the population size,
the time period under consideration and the mutation rate, and is not considered
here. Mutation variance is typically difficult to calculate in biological systems
(Warner & Altenberg, 1996), but should be easy to identify in EAs through
definition in the algorithm.

Phenotypic Diversity
This measures the degree of variation in fitness between pairs of randomly

generated individuals across the fitness landscape. Phenotypic diversity is a
quantity difficult to relate to more biologically conventional measures of diversity,
such as variance. It may measure some of the potential for evolution, given that
genetic variation is required and the one-to-one mapping between genotype and
phenotype. Its implementation will be explained later on.

MEASURES OF SELECTION
Opportunity for Selection

This gives an estimate of the upper limit of the strength of selection in a system
(Brodie et al., 1995). It is measured by the variance in relative fitness in the
population (Arnold & Wade, 1984; Brodie et al., 1995; Crow, 1958); relative
fitness being fitness scaled by mean fitness. Relative fitness is used in order to be
able to compare measures in different populations on an equivalent scale. Variance
in fitness gives a measure of the maximum strength of selection in a system since
fitness differences are required for selection to occur (Endler, 1986) and the size
of these differences determines the consequences that selection can have on the
system. It can be shown that variance in relative fitness bounds the effect of selection
(e.g., Arnold & Wade, 1984). The magnitude of the opportunity for selection will
depend crucially on the way in which fitness is measured. There are of course many
different ways of doing this in EAs as in biological populations, and the usefulness

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 285

of opportunity for selection as a measure will relate to the appropriateness of the
fitness measure used.

Intensity of Selection
This measures the overall strength of selection in a system (Brodie et al., 1995).

It is calculated (following Arnold & Wade, 1984, who proposed this method of
measurement in a biological context) by taking the slope of the linear regression of
fitness on a phenotypic trait. This calculation differs from the more usual calculation
of the effect of selection via the Breeder’s equation (Mühlenbein, 1998). The
measurement used here was derived for use upon natural populations, where it is
more flexible, allowing for arbitrary genetic correlations between characters.
Consequently, we believe that it will also be useful for evolutionary algorithms, away
from the specific circumstances in which methods based upon the Breeder’s
equation are most appropriate (Mühlenbein & Sclierkamp-Voosen, 1993;
Mühlenbein, 1998) . Our calculation relies on the observation that if selection were
more intense, we would expect a closer association between fitness and the value
of a phenotypic trait under selection. This measure requires that fitness be measured
as relative fitness, in order to provide comparable measurements, and that
phenotypic values are standardized by subtracting their mean and dividing by their
standard deviation (Arnold & Wade, 1984). The regression coefficient measures
the total selection differential, an estimate of the intensity of selection on that
particular trait which combines both direct selection on that trait and indirect
selection on other traits which affect that trait. Other methods which can be used
to calculate direct selection (Arnold & Wade, 1984) are not considered here. In
an EA, there may not be much distinction between total and direct selection,
depending upon the representation, but this is likely to be very different in biological
scenarios. The implementation of this measure depends upon fitness being
measurable, as well as some phenotypic character. These conditions should be
satisfied in many EAs, although the details of the measurement process will usually
be implementation-dependent.

Effect of Genetic Drift
Not directly related to selection but otherwise important as a means of

cancelling variation in the population is the effect of genetic drift. This process occurs
because the gene pool of the offspring in a finite population is unlikely to be the same
as that of their parents. It is particularly important in small populations where
sampling acts on all variants of the population, under selection or not, reduce the
amount of variation. Its effect will be obscured by selection in most EAs. A practical
implementation of the effect caused by this process will be discussed later.

TLFeBOOK

286 Fernández-Villacañas Martín, Marrow and Shackleton

MEASURES OF ADAPTIVE LANDSCAPES
Epistasis Variance

This measures the degree of variation in epistasis in an evolutionary system
(Davidor, 1991). Epistasis is interaction between genes; its consequence is that
measurement of the fitness resulting from individual genes will not accurately predict
the overall fitness resulting from the complete genotype. Thus epistasis variance is
a measure of the predictability of the fitness landscape derived from the fitness of
genes which make it up. As such, it is a useful measure of the performance of EAs
because it quantifies how easy it will be to explore genotype space. Epistasis
variance depends upon what definition is given to a gene, a difficult enough problem
in biological systems, likely to be implementation-specific in EAs. Consequently its
derivation is described in more detail later.

Proportion of Fitter Mutants
This measures the proportion of mutants which are fitter than the current fittest

individual, averaged over the fitness landscape. Although fitness increase is not
universal under selection either in EAs or biological systems, some fitness increase
is likely in the search for a solution in an EA, and measures of the ability to produce
fitter mutants have been proposed as an indication of the evolvability of an
evolutionary system (Altenberg, 1994).

MEASURES OF NEUTRAL EVOLUTION
Proportion of Neutral Mutants

This measures the proportion of feasible mutants which do not change
individual fitness away from its current value, and thus are adaptively neutral. This
measure gives a preliminary indication of the possibility of neutral transitions within
genotype space, and thus may give an indication of the potential for populations to
escape from local maxima which are not global maxima. The proportion of neutral
mutants does not directly tell us about neutral networks that may percolate through
genotype space; this would require substantially more analysis beyond the scope
of this chapter (Huynen, 1995; Nimwegen & Crutchfield, 1998).

This is by no means a complete list of possible measures of the performance
of EAs. However, these measures do encompass a range of the attributes of
evolutionary systems, and are general enough to apply to different EAs. Furthermore,
they have specific links to equivalent measures in biological systems. Implementation-
specific details are given later on.

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 287

THE ALGORITHMS
BTGP

The genetic programming system (BTGP) maintains a population of phenotypes
(decision trees) which it operates on directly. In this sense the genotype and
phenotype can be considered to be one and the same.

After generating the initial population, the BTGP performs the genetic
programming cycle of fitness evaluation, selection of parents and reproduction with
application of the genetic operators to produce the children of the next generation.
The BTGP has many configuration options (see Fernández-Villacañas & Exell,
1996), but for the experiments described in this chapter the following options were
used:
• “Ramped growth” of the initial population’s trees
• Fitness proportionate (roulette wheel) selection
• Genetic operators: copy, crossover, mutation

In addition to the above settings, the following parameters can be experimentally
varied:
• Rates at which each genetic operator is applied
• Maximum tree depth
• Node branching factor

Ramped growth means that the generated trees are uniformly distributed
indepth up to the maximum tree depth. Crossover is performed by randomly
choosing nodes from each parent and exchanging them, but avoiding exchanges
which would exceed the maximum tree depth. Mutation consists of replacing a
node with a randomly grown sub-tree up to the maximum depth. Further details
regarding the BTGP and the information retrieval task are given elsewhere (Fernández-
Villacañas & Exell, 1996).

MGA
The MGA is based on the Simple Genetic Algorithm described by

Goldberg (1989). The SGA together with a relatively complex genotype-phenotype
mapping comprise the Mapping Genetic Algorithm (MGA). The mapping takes an
unrestricted bit-string genome of fixed length from the genetic algorithm and parses
it sequentially to create a list of node descriptions which are then assembled to form
a tree.

Each node is described by a fixed number of bits (a gene, typically 45 bits) of
the genome. The fields encoded are: root and child labels; function type, negation

TLFeBOOK

288 Fernández-Villacañas Martín, Marrow and Shackleton

flag and used flag; reference type; reference value. The meaning of the fields is as
follows: the root label provides a bit pattern against which child labels are matched
in order to assemble a list of nodes into a tree. The node’s function is specified by
the function type, negation and used flags providing for the functions AND, OR,
NAND, NOR and NIL. The latter function allows sub-trees to be switched on or
off via mutation. Reference values are interpreted either as child labels or keywords
depending on the reference type. The reference type field uses 3 bits, building extra
redundancy into the genetic code, potentially requiring more than a single bit
mutation to change the reference type. The number of references encoded per node
defines the maximum tree branching factor (typically 4). Once the individual genes
have been decoded to generate a list of their corresponding node descriptions,
these nodes are assembled to form a decision tree comprising the phenotype by
matching child labels to root labels of other nodes. Where a match is found, a sub-
tree is formed. Every node which remains ultimately un-referenced by a parent
node forms the root node of a tree, the largest of which is taken as the phenotypic
tree.

The genetic algorithm uses fitness proportionate (roulette wheel) selection.
The mutation operator used is a simple bit flip mutation. Single point crossover was
available and was extended to respect gene boundaries, but was rarely used as it
was found to be too disruptive in general. Further investigations of the role of
crossover within the MGA are left to future research.

Possible effects on the phenotype of a point mutation of the genotype include:
addition, deletion or change of sub-tree; switching off/on a sub-tree; change of
function; replacement of a sub-tree by a keyword reference (leaf node) or vice
versa; creation or change of a keyword reference. Mutations which change labels
can effect quite large changes similar to those produced by the BTGP crossover and
mutation operators. There are several sources of redundancy in the genotype-
phenotype mapping; many different node list arrangements could code for the same
phenotypic tree and many apparently different decision trees may be logically
equivalent when evaluated.

INFORMATION RETRIEVAL
The task on which BTGP and MGA have been applied is to evolve a Boolean

decision tree capable of discriminating between two document classes, those
sought in a retrieval task and those which are of no interest. The data used is
generated in a pre-processing step from Internet documents which have been
labeled by a user as either of interest (positive) or of no interest (negative). Pre-
processing consists of extraction of a set of keywords across all the documents, and
then recording for each document whether it is a positive or negative example, and

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 289

whether each keyword is present or absent. The resulting data records, one per
document, are then separated into training and test sets.

THE PHENOTYPE AND FITNESS FUNCTION
The phenotypic representation is a Boolean decision tree. Each node of this

tree is either a function node taking one of the values AND, OR, NOR, NAND or
a leaf node variable which references a particular keyword. For a given training or
test case, each keyword variable will be instantiated to the value 1 or 0 denoting the
presence or absence (respectively) of the corresponding keyword for that case. A
tree which evaluates TRUE for a positive case or FALSE for a negative case has
thus correctly classified that case.

The fitness function is evaluated over a set of training or test cases. It is
parameterized by the following values: the number of correctly identified positives
npos, the number of negatives falsely identified as positive nneg, the total number
of positives Npos and the total number of negatives Nneg. The fitness function is
designed to minimize both the number of missed positives and the number of false
positives:

neg

neg

pos

pospos

N
n

N
nNf βα +−=)(

Note that α and β and the function lie in the range [0, 1] with 0 being the best
possible fitness, 1 the worst. The aim is therefore to minimize its value.

The data set was generated from a known decision tree illustrated in Figure 1.
It has 16 keywords, a training set of 200 cases and a test set of 50 cases. The
training and test cases were chosen randomly from the 216 possible keyword
configurations such that each set contained an equal number of positive and negative
cases.

IMPLEMENTATION OF MEASURES
In this section we will specify how the different evolutionary measures and

processes previously identified are applied to our algorithms (BTGP and MGA)
and task (information retrieval). On one hand, some of the measures’ specifications
will depend on the nature of the algorithm itself and its representation of solutions
(Boolean trees) where phenotype and genotype are the same, while, on the other
hand, some will be influenced by the definition of fitness and sampling of our fitness
landscape derived from the task. Let’s analyze them in turn.

TLFeBOOK

290 Fernández-Villacañas Martín, Marrow and Shackleton

MEASURES OF VARIATION
Genetic Diversity

In BTGP each active genomic unit that contributes to the fitness of the
individual is a function node; that is, our genes are AND, OR, NAND, NOR. These
‘genes’ can only have two allele values, either 0 or 1 after evaluation of their leave
nodes.

Genetic diversity, σ2
g is measured as the sum of the differences between the

average fitness for a particular combination of alleles in the population and the mean
fitness value for all combinations of alleles. This quantity is also normalized by the
number of possible combinations of alleles, N, as,

)(1
1

2 ff
N

N

i
ig −= ∑

=

σ

where, for instance, N=16 for BTGP with four genes.
The above measure of genetic diversity would not be computationally feasible

to calculate over the 900 bits of the MGA genome. Consequently we have
developed a second measure of genetic diversity based on Hamming distance
between genomes. The genetic diversity is the sum of Hamming distances between
the genomes of a sample of randomly chosen pairs of individuals, normalized by the
number of samples and the genome length.

Mutation Variance
This measure is implemented by first calculating the average of the differences

in fitness that result from having one gene switched on or off, ∆ fi (alleles values of

Figure 1: Decision tree corresponding to data set

OR

AND

OR NOT

OR

OR OR NOT

OR

OR

vintage
antique

collector

car
vehicle

transport
java
cafe

design
programming
construction

beans

database
tutorial

corba

n orris

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 291

1 or 0,) in the population. These are later subtracted from the mean difference, ∆ f
for each combination. For instance, in BTGP, the number of combinations for genes
on or off is N=4. The expression for mutation variance is:

)(1
1

2 ff
N

N

i
im ∆−∆= ∑

=

σ

Phenotypic Diversity
Phdiv is the result of randomly generating pairs of trees and measuring the

Hamming distance over a number of randomly generated environment loci (typically
1,000 pairs over 200 cases). One locus corresponds to a combination of the 16
different keywords in the data set. Each tree returns either 1 or 0 for each locus;
different returns are counted for each pair of trees and this result is normalized in the
scale [0,1].

MEASURES OF SELECTION
Opportunity for Selection

As described earlier on, Opsel measures the variance in the relative fitness of
the whole population: fitness is measured for each individual in the population for
a training set (typically 200 cases) and then is normalized by the mean fitness of the
whole population. Variance of this relative fitness is then calculated across the
whole population.

High values of Opsel show potential for evolution through natural selection,
hence evolvability. In the presence of strong selection, Opsel should decline over
time.

Intensity of Selection
The phenotypic traits available for choice are the number of nodes, Nnod, and

levels, Nlev, in the BTGP trees. At each generation, fitness is evaluated on the
training set and a linear correlation coefficient, r2, and the slope, b (regression
coefficient), from the fit y=a+bx, are calculated for the fitness to each phenotypic
trait diagram. For a description of these coefficients, see Press et al. (1994). In
order to compare between different values, of phenotypic traits with their also
different fitness values we have scaled the x-data to the deviation from the mean
phenotypic trait, Nnod, and divided by the trait’s standard deviation as:

TLFeBOOK

292 Fernández-Villacañas Martín, Marrow and Shackleton

nodN

nodnod NN
σ

−

and the fitness (y-data) as the relative fitness, ff .
If Nnod and Nlev were very good phenotypic traits under selection, we would

expect a correlation coefficient, r2≈ 1 and strong values for b. The real situation is
far from that; Nnod and Nlev are not good phenotypic traits as, in the majority of
runs of our algorithm, the correlation is very poor (resulting from sparse clouds of
points in the diagrams), and only in some cases we can establish some conclusions
as to the sign of the correlation coefficient, indicating predilection for bigger or
deeper trees (r>0) and smaller or shorter trees (r<0).

The algorithms used to calculate these coefficients are derived from Press et
al. (1994). In calculating intensity of selection in this way over successive generations,
we depart from the usual use of this measure, which is usually calculated once for
each population (Arnold & Wade, 1984). We do this in order to investigate
whether the intensity of selection varies during the run of the EA.

Effect of Genetic Drift
Genetic drift is a process, not a measure; its effect on the total genetic variation

may be obscured by selection in most EAs. We have decided to get a phenotypic
diversity measure in the absence of mutation and selection to get an insight on the
effect of sampling in the population from generation to generation. As previously
discussed this effect is on fitness, not on genic content, so we should refer to it as
fitness sampling drift.

MEASURES ON ADAPTIVE LANDSCAPES
Epistasis Variance

Following Davidor’s (1991) approach, epistasis variance is defined as:

22))()((1 SASf
N S

−= ∑
Γ∈Γ

εσ

where Γ is the grand population of all possible strings {0,1}
4
, f(S) is the fitness of

string S and A(S) is the predicted string value from the alleles separate contribution.

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 293

In turn, if we define the excess fitness of a string S as, fSfSE −=)()(,
where f¯ is the average fitness and:

)))((
)(

1()(
4

1

fSf
aN

AE
i PopSi ais

−= ∑ ∑
= ∈ =

as the excess genic value for each allele, Ni(a) being the number of strings that match
allele a at position i; then we can define the predicted string value, fAESA +=)()(
that we need in the epistasis variance definition.

Other variances that will be used are the fitness variance:

22))((1 ∑
∈

=
PopS

f SE
N

σ

and genic variance:

22))((1 ∑
∈

=
PopS

A AE
N

σ

Normally, the grand population and our sample population, Pop, are not
equal; this results in different values for epistasis variance when we sum Γ or Pop.
When we are missing some of the combinations of alleles from the grand population,
the statistic is subject to sampling error; the distinction between base epistasis and
sample population epistasis variance is thus very important as the latter can
sometimes be equal or bigger than the former. When there are no sampling errors,
σ2

ε = σ2
f − σ2

A.
Each generation epistasis variance is calculated; first the fitness of the

individuals are computed together with the average population fitness; later the
population is sampled for having an instance of allele i active and counted, their
excess value calculated and all these added up to form the excess genic value E(A);
the predicted string value from the individual contributions from the alleles, A(S), is
then used in conjunction with the real fitness of that string, f(S), to calculate the
epistasis of each string. Finally these values are squared and averaged for the whole
population.

TLFeBOOK

294 Fernández-Villacañas Martín, Marrow and Shackleton

The measure of bit-wise epistasis we use in MGA is that suggested by Fonlupt
et al. (1998). Bit-wise epistasis was measured in MGA for all 45 bits of a single
“gene” (corresponding to one potential tree node) at each generation of each run.
The values were then averaged across all runs and generations for each bit to obtain
an overall measure of epistasis per bit.

Proportion of Fitter Mutants
At each generation each individual in the population is mutated and the mutant

and original tested over the training data set. We count a mutant as fitter when the
mutant is fitter than the fittest tree in the previous generation. We repeat this process
for all training cases and each individual. Finally, the total count is normalised. As
previously discussed the ability to produce fitter mutants at each generation does
not relate directly to evolvability but it is a requirement for EAs to solve problems.

MEASURES OF NEUTRAL EVOLUTION
Proportion of Neutral and Non-Neutral Mutants

A number of randomly generated trees are generated and each tree is mutated
and evaluated for a number of random environment loci. Equivalent phenotypic
responses are counted and normalized. The resulting measure, Prnm, gives us the
proportion of mutation events which have identical phenotypic effect, and is thus a
measure of neutrality with respect to phenotypic behaviour. We also measure the
proportion of mutants which are neutral with respect to fitness.

The proportion of non-neutral mutants, Prnnm, is therefore, Prnm=1-Prnm.

RESULTS AND DISCUSSION
Results were obtained for both BTGP and MGA, subject to the differences

in implementation described above. In particular, the interpretation of a gene in the
context of each algorithm differs, with the BTGP having 4 ‘genes’ and the MGA
having 20 genes, each comprising 45 bits (a total of 900 bits). For instance,
calculation of epistasis variance is not computationally feasible over 900 bits, so we
instead calculated bit-wise epistasis for the MGA, sampled over the population.

Results were generated over 10 runs of each algorithm, for 1000 generations,
with a population size of 1,000 individuals. The settings we used for BTGP were:
mutation probability of 0.05 per tree; maximum tree depth of 4 levels; roulette wheel
selection; branching factor between 2 and 4. The MGA settings were: probability
of single bit mutation per genome of 0.9; roulette wheel selection. Neither algorithm
used elitism.

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 295

Each algorithm succeeded in reducing the mean fitness over the run. The
BTGP typically reached a mean fitness of 0.25 (best run: 0.2) at the end of 1,000
generations, while the MGA achieved better fitness, typically 0.09 (best run: 0.05).
The MGA mean fitness changed in a punctuated fashion with periods of rapid
improvement interspersed with relatively slow change, whilst the BTGP mean
fitness improved more evenly. Both algorithms maintained relatively constant levels
of fitness variance, with the MGA having the highest level (0.09) and BTGP a lower
level (0.005). This suggests that the MGA offers more scope for exploration.

The genetic diversity in BTGP showed a slow increase on average through the
runs. In MGA the equivalent measure increased steadily, interspersed with rapid
temporary reductions in diversity. This reflects high fitness neutrality in the genetic
representation allowing increases in diversity in periods when selection is not
operating strongly. The corresponding phenotypic diversity measure was recorded
for both algorithms and found to be very similar in both cases, at a level of
approximately 0.1, constant through each run. The difference between phenotypic
and genetic diversity measures was a result of the complex mapping between
genotype and phenotype encoded in each algorithm.

The effect of genetic drift was also studied in different runs with different
population sizes; the results indicate that the smaller the population size, the faster
is the reduction of the variation and, even for some small population sizes, variation
is cancelled completely.

Mutation variance increased in BTGP from σ m2≈ 0.002 to σ m2≈ 0.01 after
1,000 generations; this implies a greater role for mutation in generating and changing
variation towards the end of the run. However, it may be that this is an artefact
caused by the convergence of mean fitness towards a fixed lower boundary of zero.

Opportunity for selection (Figure 2) differed markedly between the two
algorithms. In BTGP it increased from 0.05 to 0.09, while in MGA the corresponding
increase was from 0.1 to 1.4. The more rapid increase measured in the MGA is a
consequence of mean fitness decreasing more rapidly. These observations suggest
that the MGA offers more opportunity for selection to act. It is interesting however
that opportunity for selection does not decline during the run of either algorithm,
suggesting that the redundancy built into each algorithm prevents early convergence.

We considered intensity of selection with reference to tree size in a number of
nodes. If the number of nodes was under strong directional selection, we would
expect a correlation coefficient, r≈±1, and high values for the regression coefficient.
The absolute value of the correlation coefficient for BTGP reaches 0.9 and the
corresponding regression coefficient is +0.3. In contrast, for MGA the correlation
coefficient reaches a maximum absolute value of 0.6 with a corresponding
regression coefficient of -0.6. In addition, the sign of each correlation coefficient is
always positive for BTGP and almost always negative for MGA. The implication

TLFeBOOK

296 Fernández-Villacañas Martín, Marrow and Shackleton

is that in BTGP larger trees tend to have higher fitness, while in MGA this is true of
smaller trees. This characteristic probably results from the different manner in which
trees are generated in the respective algorithms, and indicates that it may be easy
to include implicit biases in the details of algorithm construction.

In BTGP epistasis variance displays the same spiky behaviour as the sampling
error, σ v

2-σ A
2, with similar magnitude. This means that the epistasis variance is

being masked by sampling errors in the allele population and is in consequence
unreliable. Measurement of bit-wise epistasis in MGA revealed that certain bits had
high epistasis values relative to the others (approximately 7 times the magnitude of
the average). On inspection it was found these bits played a crucial role in tree
construction, linking nodes to one another. Thus changes in these bits relate strongly
to bits determining other (linked) parts of the tree. The measure is useful in
determining relative relatedness between bits in the encoding.

The proportion of fitter mutants (those fitter than the previous best individual)
was found to be around 0.02 for BTGP. However, this reflects the fact that elitism
was not used; if elitism is used the proportion of fitter mutants typically falls to 0.001
or less for BTGP (corresponding to a single individual). We would need to use a
larger population size to generate a more meaningful and accurate measure.

The level of phenotypic neutrality (Figure 3) was very high for MGA (in excess
of 0.95) whilst it was approximately 0.75 for BTGP. This permits higher levels of
neutral exploration of genotype space using MGA, but suggests that neutral
transitions in genotype space may be important in the function of both algorithms.

CONCLUSIONS AND FUTURE WORK
In the preceding sections we have compared the BTGP and MGA, and shown

that their relative performance at information retrieval derives from different aspects

Figure 2: Opportunity for selection for BTGP and MGA averaged over 10
runs

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 297

of the algorithms as implemented (this needs to be specified and confirmed). In this
chapter we have only provided the preliminary steps of such a comparative analysis,
however the results presented here give indicators for the direction of future work.

MGA can be regarded as performing better as it attains a lower mean fitness
at the end of its run. The measures we have calculated suggest that this may be a
consequence of greater opportunity for selection, combined with increased neutrality
with respect to phenotypic effect (Figure 3). However this does not mean that
BTGP is ineffective at the information retrieval task: it shows high values of the
above parameters as well.

Our results also indicate how we may learn about possible changes in the
representation to improve algorithm performance. The calculation of bit-wise
epistasis in MGA shows how the specific representation used gives us the structure
of the fitness landscape: this information could be used to design a better
representation for solving the current problem.

We have used some measures inspired by biological evolution. The difficulty
of deriving and interpreting the results of the measures here highlights the differences
between biological and computational evolution. In biological systems, the situation
is typically one of limited information, both about the gene pool and individual
genotypes, and about the phenotypes of organisms. In evolutionary computation
much more complete information is available, in principle, although it may be
computationally intensive to obtain it.

Despite this, measures derived from biological sources may be difficult to use,
for several reasons. Evolutionary computation typically uses small populations,
which may not include all the possible variation that could occur with respect to the
character or gene under consideration. This can lead to differences between the
properties of particular populations, as compared to the theoretical grand population,
which reduce the usefulness of measures such as epistasis variance.

Figure 3: Proportion of neutral mutants that have no phenotypic effect
averaged over 10 runs

TLFeBOOK

298 Fernández-Villacañas Martín, Marrow and Shackleton

Furthermore, evolutionary algorithms typically are initialized with a random,
diverged population, and spend much of their time away from convergence. This
is in contrast to biological populations, in which most loci have converged to fixation,
allowing the relatively few polymorphic ones to be considered in isolation.
Evolutionary measures inspired by biology which focus on relatively few characters
may need changing as a consequence.

An additional problem for measurement of evolutionary algorithms comes
from the definition of genotype and phenotype, and their constituents, genes and
phenotypic traits. Although the definition of a gene in a living organism is not entirely
without ambiguity, there are generally agreed-upon protocols for identifying and
defining genes. By contrast, the very flexibility of specifying the genotype and
genotype-phenotype mapping in a genetic algorithm makes it difficult to define a
gene. This problem is exacerbated in genetic programming systems such as BTGP,
where the programs implement Boolean trees. Is a gene one type of Boolean
function, with every instance of that function the same gene, or are we dealing with
distinct genes? We have adopted a particular view in this chapter in order to
implement our measures, but do not believe that this will be a universal solution.

In BTGP and MGA, it is also difficult to identify what relevant phenotypic traits
to measure are. Indeed, in BTGP it could be argued that there is no distinction
between phenotype and genotype. Problems of identifying appropriate phenotypic
traits for measurement are likely to arise often when there is a complex mapping
between genotype and phenotype. Complicated genotype-to-phenotype mappings
have been identified by several authors (e.g., Bäck et al., 1997) as a likely route to
more versatile applications of evolutionary algorithms. Consequently the identification
of methods which focus upon relevant phenotypic variation is an important task for
the future.

This chapter develops a range of evolutionary measures in order to gain insight
into the workings of EAs. Since our measures derive from fundamental evolutionary
attributes, this methodology should be extensible to a wide range of EAs.

Finally, we emphasize that we are interested in application of EAs to real-
world problems. We do not see measures such as those we have investigated here
as an end for evolutionary computation research in themselves, only as a preliminary
contribution to a better understanding of problem solving by evolutionary algorithms.

REFERENCES
Altenberg, L. (1994). The evolution of evolvability in genetic programming. In

Kinnear Jr, K.E. (Ed.) Advances in Generic Programming, 47-74,
Cambridge, MA: MIT Press.

TLFeBOOK

Evolutionary Algorithms and Information Retrieval 299

Altenberg, L. (1995). The schema theorem and Price’s theorem. In L. D. Whitley
& M. D. Vose (Eds.), Foundations of Genetic Algorithms, 23-50. San
Fransisco, CA: Morgan Kauffman.

Arnold, S. J. & Wade, M. J. (1984). On the measurement of natural and sexual
selection: Theory. Evolution, 38, 709-719.

Bäck, T., Hammel, U. & Schwefel, H.-P. (1997). Evolutionary computation:
Comments on the history and current state. IEEE Transactions in Evolu-
tionary Computation, 1, 3-17.

Bedau, M.A. & Packard, N.H. (1991). Measurement of evolutionary activity,
teleology and life. In C.G. Langton, C. Taylor, J.D. Farmer & S. Rasmussen
(Eds.), Artificial Life II, 431-461, Redwood City, CA: Addison-Wesley.

Blickle, T., & Thiele, L. (1997) A comparison of selection schemes used in
evolutionary algorithms. Evolutionary Computation. 4, 361-394.

Brodie, E. J. III, Moore, A. J. & Janzen, F. J. (1995). Visualising and quantifying
natural selection. Trends in Ecology and Evolution, 10, 313-318.

Crow, J. F. (1958). Some possibilities for measuring selection intensities in man.
Human Biology, 30, 1-13.

Davidor, Y. (1991). Epistasis variance: A viewpoint on GA-hardness, In G.J.E.
Rawlins, (Ed.), Foundations of Genetic Algorithms, 1, 23-35, San Mateo,
CA: Morgan Kauffman.

Endler, L., (1986) Natural Selection in the Wild. Princeton, NJ: Princeton
University Press.

Falconer, D.S. (1989). Introduction to Quantitative Genetics, (3rd. ed.)
Harlow, Longman.

Fernández-Villacañas, J.L. & Exell, J. (1996). BTGP and information retrieval.
Proceedings of the Second International Conference ACEDC’96, PEDC,
University of Plymouth.

Fonlupt, C., Robilliard, D. & Preux, P. (1998). A bit-wise epistasis measure for
binary search spaces. In A. E. Eiben, T. Bäck, M. Schoenauer, H.-P.
Schwefel (Eds.), Parallel Problem Solving from Nature—PPSN V. 47–
56. Berlin, Springer.

Gavrilets, S. (1997). Evolution and speciation on holey landscapes. Trends in
Ecology and Evolution, 12, 307-317.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimisation and
Machine Learning, Reading, MA: Addison-Wesley.

Hofbauer, J. & Sigmund, K. (1988). The Theory of Evolution and Dynamical
Systems, Cambridge: Cambridge University Press.

Holland, J.H, (1992). Adaptation in Natural and Artificial Systems, Cam-
bridge, MIT Press.

TLFeBOOK

300 Fernández-Villacañas Martín, Marrow and Shackleton

Hordijk, W. (1997). A measure of landscapes, Evolutionary Computation, 4,
335-360.

Huynen, M.A. (1995). Exploring Phenotype Space Through Neutral Evolu-
tion. Santa Fe Working Paper 95-10-100.

Kauffman, S. A. (1993). The Origins of Order, New York: Oxford University
Press.

Lynch, M., Walsh, B. (1998). Selection and Evolution of Quantitative Traits.
Sunderland, MA: Sinauer.

Manderick, B., deWegner, M. & Spiessens, P. (1991). The genetic algorithm and
the structure of the fitness landscape. In R.K. Belew, & L.B. Booker, (Eds.),
Proceedings of the Fourth International Conference on Genetic Algo-
rithms, 143-150. San Mateo, CA: Morgan Kauffman.

Marrow, P. (1999). Evolvability: Evolution, computation, biology. In A. S. Wu,
(Ed.), Proceedings of the 1999 Genetic and Evolutionary Computation
Conference (GECCO-99) Workshop Program, 30-33.

Mitchell, M. and Forrest, S., (1995). Genetic algorithms and Artificial Life,
Artificial Life, 1, 267-289.

Mühlenbein, H. & Sclierkamp-Voosen, D. (1993). Predictive models for the
breeder genetic algorithm. I. Continuous parameter optimization. Evolution-
ary Computation 1, 25-49.

Mühlenbein, H. (1998). The equation for the response to selection and its use for
prediction, Evolutionary Computation 5, 303-346.

Nimwegen, E. V. & Crutchfield, J.P. (1998). Optimizing Epochal Evolutionary
Search: Population-Size Independent Theory, Santa Fe Working Paper
98-06-046.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1994).
Numerical Recipes in C, Cambridge University Press, 662.

Roff, D. (1998). Evolutionary Quantitative Genetics, London: Chapman and
Hall.

Schuster, P. (1996). Landscapes and molecular evolution. In Landscape Para-
digms in Physics and Biology.

Sloman, (1998). Some notes on combinatorial search and how (not?) to tame it.
Wagner, G.P. & Altenberg, L. (1996). Complex adaptations and the evolution of

evolvability, Evolution, 50, 967-976.

TLFeBOOK

Design Wind Speed 301

Chapter XVII

Design Wind Speeds Using
Fast Fourier Transform:

A Case Study
Z. Ismail, N.H. Ramli and Z. Ibrahim,

Universiti Malaya, Malaysia

T.A. Majid and G. Sundaraj
Universiti Sains Malaysia, Malaysia

W.H.W. Badaruzzaman
Universiti Kebangsaan Malaysia, Malaysia

Copyright © 2003, Idea Group Inc.

ABSTRACT
In this chapter, a study on the effects of transforming wind speed data, from
a time series domain into a frequency domain via Fast Fourier Transform
(FFT), is presented. The wind data is first transformed into a stationary
pattern from a non-stationary pattern of time series data using statistical
software. This set of time series is then transformed using FFT for the main
purpose of the chapter. The analysis is done through MATLAB software,
which provides a very useful function in FFT algorithm. Parameters of
engineering significance such as hidden periodicities, frequency components,
absolute magnitude and phase of the transformed data, power spectral
density and cross spectral density can be obtained. Results obtained using
data from case studies involving thirty-one weather stations in Malaysia show
great potential for application in verifying the current criteria used for design
practices.

TLFeBOOK

302 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

INTRODUCTION
In the design of civil engineering structures, the effects of the natural environment

on these structures have to be taken into consideration. Some examples of these are
the effects of wind, current and waves on offshore structures; and the effects of wind
and seismic activities on buildings. This chapter focuses mainly on the effects of wind
on buildings. The parameter of interest in the design and construction of a structure
is the design wind speed. This can be obtained from fundamental principles backed
by verification through field studies of the dynamic characteristics of the structure.
In many cases involving large structures, the input force cannot be created at will
or be controlled. This shortcoming is overcome through ambient vibration testing
and the use of Fast Fourier Transform (FFT) to convert the raw wind data into wind
loads.

The chapter starts with a review of the general effects of wind on structures and
the inhabitants. The parameters used in the design of structures including buildings
are discussed. It is shown here that Fast Fourier Transform (FFT) which include
Power Spectral Density (PSD), Cross Spectral Density (CSD) and Turbulence
Intensities (TI) can be applied to derive the design parameters and subsequently,
improve a wind code for structures. Examples of early studies on wind loads are
given, and the limits of tolerance for civil engineering structures and the inhabitants
therein are mentioned. It is noted that the criteria for design are more concerned with
the human tolerance rather than the structural tolerance. In the design of structures,
there is a need for a full understanding of the effects of wind at each stage of
construction since the tolerance for the final structure could vary appreciably with
the tolerance at each intermediate stage of the structure during construction.
Vibration effects due to wind on structures are given, and examples of vibration
effects on mechanical structures are also given as a comparison.

Methods of structural analysis and structural monitoring including vibration
analysis and modal analysis are mentioned. Field tests including forced vibration
methods as well as ambient vibration methods are described. Factors affecting the
design of structures as well as the incentives to better understand the complex
effects of wind on structures result in the approach to simplify these effects into
components. These components can then be utilized in defining design wind speed
and deriving design wind load, which can be used to develop the local design wind
code for civil engineering structures such as buildings.

The analysis using FFT in this chapter can be taken one step further through
frequency response function (FRF). FRF is the ratio of the output response to the
input excitation force. This measurement is typically acquired using a dedicated
instrument such as an FFT analyzer or a data acquisition system with software that
performs the FFT. The input data in this case would be the measured wind speed
using several anemometers, which can be converted into dynamic pressure

TLFeBOOK

Design Wind Speed 303

experienced by the structure. The output data would be the dynamic response of
the structure measured using several transducers such as accelerometers. Once the
data are sampled, the FFT is computed to form linear spectra of the input excitation
and output response. Typically, averaging is performed on power spectra obtained
from the linear spectra. The main averaged spectra computed are the input power
spectrum, the output and input signals.

These functions are averaged and used to compute two important functions
that are used for modal data acquisition, which are the FRF and the coherence. The
coherence function is used as a data quality assessment tool which identifies how
much of the output signal is related to the measured input signal. The FRF contains
information regarding the system frequency and damping, and a collection of FRF
contains information regarding the mode shape of the system at the measured
locations. This is the most important measurement related to experimental modal
analysis.

The FRF can be viewed in the form of acceleration or displacement experienced
by the structure due to the wind speed. Information such as this as well as the mode
shape obtained provides vital information from the design aspect. This will help to
provide additional meaningful and significant engineering data to structural design
engineers (Avitable, 2001).

BACKGROUND
Early Studies

Wind loads on structures have been studied over the last 400 years or so,
starting with some empirical work by Newton. During the next 100 years, some
work was done particularly on the determination of wind forces on objects of
different shapes. By the middle of the eighteenth century, correlation for many
structures had already been developed. Research work on windmills by Smeaton
focused on wind moments, rather than wind forces. Experiments into wind loads on
static lattice frameworks by Baker followed the Tay Bridge disaster in 1879. This
demonstrated the need for more precise wind data. The present focus of interest
by researchers is the study of atmospheric turbulence in wind tunnels, and in the
investigation of the dynamic response of structures due to wind. In addition, the
development of automatic aircraft landing systems demands research and
understanding of the vertical and horizontal components of wind-speed correlation
(Sachs, 1972).

Limits of Tolerance
In the past, the vibration of tall buildings has merely been considered in terms

of its structural implications. However, there are structures today that vibrate in

TLFeBOOK

304 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

certain wind conditions, which have not shown any structural ill effect but has given
concern in other aspects. The vibration of buildings can have undesirable effects on
the well being of its inhabitants. Although the natural bending frequencies of many
tall structures are within the limits of between 0.1 Hz and 0.3 Hz, it is known that
these oscillations can induce sickness.

Throughout the period when a structure is being erected, attention should be
paid to the limits of structural tolerance for each stage of construction. A stable final
structure may be susceptible to damaging wind loads at some stage in its erection,
and this should be taken into account in its design and construction procedure. For
a construction stage, a lower design wind speed than that for the completed
structure may be used with the same element of risk, since each erection stage lasts
for a relatively short period of time.

Civil Engineering Structures
Civil engineering structures like lattice towers which are used for a number of

diverse purposes such as antennae for telecommunication, radio and television
broadcasting, power transmission and lighting supports, electric power transmission
lines or skyscrapers have always been affected by wind loads. A standard method
on determining how these loads act and the effects of certain frequency of wind on
high-rise structures need therefore to be carefully examined and calculated. This is
to ensure structural safety. It is also for the purpose of monitoring the continued
usefulness of the structures. A lattice tower needs to be designed taking into
consideration the resonant dynamic response due to wind load, which arises when
the natural vibration frequency (fundamental frequency) of the structure is low
enough to be excited by the frequency of turbulence in the natural wind. However,
in the design of lattice towers, there is a further requirement for extending the basis
of design to include, more explicitly, the load effects, such as top deflection, bending
moment and shear force on the structure. In addition, wind behavior depends on
the structure and topology of the terrain, therefore for safe design of all these
structures, knowledge of wind characteristics in uneven terrain is of vital importance
(Simiu & Scanlan, 1977).

The British Standards and the Australian Standards have recommended Gust
Response Factors (GRFs) for lattice towers for different load effects like bending
moment for the design of main leg members, shear force for the design of the main
bracing members and top deflection for the serviceability criteria.

Structural Analysis
Vibration measurements and analysis are made for a variety of reasons. It may

be done to determine the natural frequencies of a structure. It may be done to verify
an analytical model of a structure. It may be done to determine the dynamic

TLFeBOOK

Design Wind Speed 305

durability under various environmental conditions, or it may be done to monitor the
condition of a structure under various loading conditions. As structural analysis
techniques continually evolve and become increasingly sophisticated, awareness of
the potential shortcomings in their representation of structural behavior also grows.
This is especially so in the field of structural dynamics. The justification and
technology exists for vibration testing and analysis of large civil engineering
structures. However, large civil engineering structures are usually too complex for
accurate dynamic analysis using manual computation. It is usual to use matrix
algebra-based solution methods, employing the finite element method of structural
modeling and analysis, on digital computers. All linear models have dynamic
properties, which can be evaluated using techniques of dynamic analysis, such as
modal analysis. The modal analysis technique can provide the natural frequencies
and corresponding mode shapes for a numerical model of a structure. For an
existing structure, the accuracy of such a linear finite element method model can be
validated through comparison of these dynamic properties with those obtained from
testing the actual structure. Vibration testing and analysis of an existing structure can
therefore provide a quantitative evaluation of its dynamic properties.

Mechanical Engineering Systems
The theories of vibration testing and analysis are well established. Common

applications are found in mechanical engineering, where it is used to study industrial
machinery noise and vibration problems. The techniques commonly use some
device whose express purpose is to artificially induce a force or displacement to
excite the structure. Usually a controlled periodic, random, transient or impact force
is used.

In the field of mechanical engineering, there are a number of integrated systems,
which can handle the experimental testing, system identification and modal refinement.
These systems are mostly based on forced vibration tests, which range from simple
impact tests to complex test setups involving several exciters. Due to their relatively
small size, most mechanical specimens can be tested in laboratories under
controlled conditions. There is, however, no such luxury or advantage for the
verification of dynamic models of large civil engineering structures. The procedure
is relatively expensive, and with very long or massive structures, such as dams, it
may be necessary to use more than one exciter, thereby increasing the costs for
testing.

Large Structures
The integrated systems, developed for mechanical engineering applications,

cannot be applied economically to large civil engineering structures such as bridges
and buildings. Bridges form vital links in transportation networks and therefore

TLFeBOOK

306 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

traffic shutdowns associated with forced vibration testing would be costly. Controlled
forced vibration tests of buildings may disturb the occupants and may have to be
conducted after working hours, which would also increase the cost of the testing.
Therefore, routine dynamic tests of bridges and buildings must be based on ambient
methods, which do not interfere with the normal operation of the bridge or the
building.

Dynamic properties of a structure may vary over time. This could be as a result
of changing material properties due to weathering or as a result of response to load
history. Determination of dynamic properties before and after an extreme load
event, such as an earthquake, may indicate changed conditions not evident by
conventional means of evaluation, such as visual inspection or standardized material
non-destructive testing. Vibration testing can therefore be considered for use as a
monitoring tool, for providing dynamic properties over time, which can be studied
to identify structural changes.

Generally, analytical models of existing large structures are based on geometric
properties taken from old drawings and material properties obtained from the
structure. A series of assumptions are also made to account for the surrounding
medium and its interaction with the structure such as soil-structure interaction in the
case of buildings and bridges, soil-water-structure interaction in the case of dams,
wharves and bridges and the composite behavior of structural elements. This, in
general, is not the case for mechanical systems.

Vibration Testing Techniques
Two techniques are available for vibration testing of large structures: forced

and ambient vibration techniques. Both forced vibration and ambient methods have
been used in the past and are capable of determining the dynamic characteristics of
structures. Forced vibration methods can be significantly more complex than
ambient vibration tests, and are generally more expensive than ambient vibration
tests. The main advantage of forced vibration over ambient vibration is that for the
former, the level of excitation and induced vibration can be carefully controlled,
while for the latter, one has to rely on the forces of nature and uncontrolled artificial
forces such as vehicle traffic on bridges. Sometimes the structure can only be
excited to a very low level of vibration. As a result, the sensitivity of sensors used
for ambient vibration measurements needs to be much higher than those required
for forced vibration tests.

Forced Vibration Testing
By definition, a forced vibration test constitutes the use of any source of

controlled excitation applied to a large structure in order to induce vibrations.
Ambient tests may be used to test bridges, nuclear power plants, offshore platforms

TLFeBOOK

Design Wind Speed 307

and buildings. Although ambient tests do not require traffic shut downs or
interruptions of normal operations, the amount of data to be collected is significant
and it can take several weeks to analyze all these data thoroughly. The techniques
for data analysis are also different from the forced vibration analysis technique. The
theory for forced vibration tests of large structures is well developed and is a natural
extension of the techniques used in forced vibration tests of mechanical systems. In
contrast, the theory and technique for ambient vibration tests still requires some
further development.

Forced vibration tests are generally conducted to determine the dynamic
characteristics of both simple and complex systems. In these tests, controlled forces
are applied to a structure to induce vibrations. By measuring the structure’s
response to these known forces, the dynamic properties of the structure can be
determined. Controlled excitation forces can be applied to a structure using several
different methods. The three most popular methods are:
i) Shaker Tests: Shakers are used to produce sufficiently large forces, to

effectively excite a large structure in a frequency range of interest. For large
structures, such as bridges or tall buildings, the frequencies of interest are
commonly less than 1 Hz. At such low frequencies, a shaker cannot generate
sufficiently large forces, and while it may be possible to build such massive, low
frequency shakers, these are expensive to construct, transport and mount.

ii) Impact Tests: Impact testing is to identify the dynamic characteristics of
machine components and small assemblies. The test article is attached with an
accelerometer, and the hammer, which is used to strike it, is attached with a
force transducer. The impact force and acceleration response time histories
are used to compute frequency response functions (FRFs) between a measured
point and the point of impact. These FRFs can be used to determine the natural
frequencies, mode shapes and damping values of the structure using well-
established methods of analysis of impact test data.

iii) Pull Back Tests: The pull back or quick-release testing method generally
involves inducing a prescribed displacement to a structure and quickly
releasing it, causing the structure to vibrate freely. The objective of this
technique is to quickly release the load and record the free vibrations of the
structure, as it tends to return to its position of static equilibrium.

Ambient Vibration Testing
Ambient vibration analysis is a vibration testing and analysis technique, which

can be targeted for large civil engineering structures. Since the method requires no
artificial excitation to be imparted to the structure being tested, and relies on the
naturally occurring ambient vibrations, this provides a distinct cost advantage over
other methods.

TLFeBOOK

308 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

When ambient vibration testing is considered, a structure may be excited by
wind, by micro tremors, by machinery or by traffic. Unlike forced vibration testing,
the excitation forces cannot be controlled. Natural frequencies and mode shapes
are obtained by measuring the vibrations of the structure simultaneously at several
locations on the structure. Natural frequencies cannot be evaluated for each
independent degree of freedom since information on the excitation is not known.
Alternative methods of analysis of ambient vibration data are then to be utilized to
identify relevant dynamic characteristics of the structure.

Severe environmental natural excitations such as earthquakes, windstorms
and large waves can also be considered ambient vibrations, except that the level of
motion is much higher and that the source of the excitation can be known. In some
cases it can also be measured. However, the occurrence of such severe excitations
cannot be controlled or predicted, and the vibrations of the structure can only be
captured if permanent instrumentation is placed in the structure and set-up to record
vibrations at prescribed levels of shaking. In many seismically active areas,
buildings, bridges and dams are fixed with instruments capable of measuring severe
shaking at different locations within the structure. Modal analysis techniques can be
used to identify the dynamic properties of such structures from recorded earthquake
motions.

The methods that have been developed for analyzing data from forced and
ambient vibration tests range from linear deterministic models to nonlinear stochastic
models. The applications range from improving mathematical models of systems to
damage detection, identifying the input of a system to controlling its response.
Parameter estimation methods using dynamic signals can be classified as time-
domain methods, frequency-domain methods and joint frequency-time domain
methods (Ventura, 2001).

Effects of Wind
Over the centuries, wind has caused considerable damage to buildings and

structures and induced collapse in many. The trend to more economic design using
less material accentuates the relative importance of wind loads as compared to
gravitational loads, and this trend has greatly accelerated over the past few decades.
The situation with structural design currently is such that the assessment of
environmental loading may represent the greatest unknowns in the design of a
proposed structure. The nature of the wind in the earth’s boundary layer is complex.
The variation of the average wind speed is usually approximated in calculations by
a power law and depends on such factors as the surrounding ground and buildings
and the general synoptic weather pattern (Houghton & Carruthers, 1977).

The prediction of the wind response of a skeletal structure is becoming more
and more important in structural design due to the sensitivity of such structure to

TLFeBOOK

Design Wind Speed 309

wind loads. Some data have been reported based on wind tunnel tests. However,
reliable data from full-scale measurements are scarce. Hence a full-scale field
experimental program using instruments such as anemometers, accelerometers and
strain gauges should be taken up using a lattice tower to study the dynamic behavior
of the structure under wind loads.

For convenience of analysis, wind speed is broken down into a mean
component and a fluctuating component. While the mean speed component is
assumed to result in static wind pressure and corresponding steady deflection, the
fluctuating component gives rise to dynamic amplification. Modern codes of
practice provide criteria for determining the design wind speed depending on
ground roughness, building size, height above ground, required life span of the
structure and the topography of the site. These are intended to cover the
contingencies affecting the incident wind and the way in which gustiness influences
loading. However, the magnitude of the design wind speed may well be the most
uncertain element of a wind-load calculation.

Turbulence in the wind produces fluctuating loads, which can cause motion that
is mainly in the wind direction. Vortices shed alternately from either side of a tall
structure produce a force in the crosswind direction that is roughly sinusoidal and
this can cause vibration of a structure of corresponding natural frequency. When the
structure is stationary, the vortex-induced force has a broad bandwidth but when
it is oscillating above certain amplitude, the vortex shedding locks-on to the
vibration and the exciting force has an almost sinusoidal form (i.e., a sharp peak in
its spectrum). Winds that are not necessarily strong can cause structures to vibrate
in ways such that, even if not disastrous, can still cause structural deterioration,
fatigue problems or human discomfort.

The main objective is to always provide, by the most economical means,
predictions of wind effects that are sufficiently accurate for the civil engineer. In a
significant number of cases, the criteria are set by the tolerance of humans and as
such are not well defined. In the case of wind speeds around pedestrian areas for
example, values between 2 m/s and 9 m/s have been suggested as upper limits.
However, the turbulence, the air temperature and humidity are also important. A
steady breeze of 2 m/s may be of no consequence whereas a breeze of 2 m/s
fluctuating in direction would be intolerable.

Design Wind Speed
The design wind speed at any given station in the United States is defined as

the peak gust at 30 ft above ground record at that station. This definition was
adopted in the Uniform Building Code. It follows from an equation that the design wind
speed implicit in the uniform Building Code is approximately equal to the 39-year gust
wind.

TLFeBOOK

310 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

The design wind speed specified by the BS and ANSI are 50-year fastest miles
for most permanent structures, 100-year fastest miles for structures with an
unusually high degree of hazard to life and property in case of failure, and 25-years
fastest miles for structures having no human occupant or where there is negligible
risk to human life. In the light of past experience, it may be stated, however, that both
the 39-year peak gust and the 50-year fastest mile criteria result in wind loads that
appear to ensure a reasonable degree of structural safety. Some criteria to be
adopted in obtaining the corresponding values for the Malaysian Standard (the case
study) for Wind Loads have to be developed.

Gust Response Factors
Initially, the design wind speeds are obtained by multiplying the mean wind

speeds with gust velocity factors. The mean wind speeds are used to allow for
fluctuations in the wind speed. However, neglecting both the dynamic properties
and size of the structure could result in an unsafe structure or a conservative over-
designs of a structure. The structural loads produced by wind gusts depend on the
size, natural frequency and damping of the structure. The structural failure, which
is directly attributable to gust action, emphasizes the importance of these parameters
in arriving at the gust wind load. The gust response factors (GRFs) that will account
for influence of these important parameters, are a measure of the effective dynamic
load produced by gusts, and are intended to translate the dynamic response
phenomena produced by gust loading into a simpler factored static design criteria.

Currently, the wind sensitive structures are designed using a semi-analytical
approach with a simple model relating the upwind turbulent velocity fluctuations and
the fluctuating forces on the structure. In this approach, the dynamic response is
treated using random vibration theory and modal analysis. In most of the international
design codes and standards, the GRF for the modal coordinate is computed using
the above approach and the same value is considered for all other load effects such
as bending moment, shear force, etc. It is also assumed that the first mode shape
of the structure varies linearly with height, and the contribution of higher modes of
vibration is neglected. This makes the GRF constant for the whole height of the
structure.

Malaysian Wind Code (The Case Study)
Malaysia is situated close to the equator and is outside the belt of severe

tropical cyclones. The monsoon winds are also mild. Therefore, winds due to these
weather systems are relatively not severe. However, equatorial regions are prone
to tropical thunderstorms. Wind speeds of the gust fronts of these thunderstorms
can be relatively high.

TLFeBOOK

Design Wind Speed 311

There are several codes of practice currently adopted in Malaysia for wind
loads. These are AS117-2-1989 (SAA Loading Code: Part 2 Wind Loads),
ASCE 7-95: Minimum Design Loads For Building and Other Structures and BS
6399. Generally, for wind load determination on buildings, the British Standard
(CP3: Chapter V: Part 2: Sept. 1972, Code of Basic Data For the Design Of
Buildings Chapter V, Loading, Part 2: Wind Loads) is adopted.

COMPUTATIONAL CONCEPTS
Fourier Transform

Time and frequency are two different ways of expressing the characteristics of
a signal. Both the time signal itself and a frequency analysis of it present the same
information since each frequency domain point is derived from the entire time
domain signal. The frequency domain provides an alternative perspective for
characterizing the behavior of oscillating and vibrating functions.

Waveform that exists could be generated through adding sine waves. Real-
world signals can be broken down into these same sine waves and it can be shown
that this combination of sine waves is unique. For measurement of any parameter,
to detect a small sine wave in the presence of large signals, it is better to use
frequency domain. When these components are separated in the frequency domain,
the small components are easily seen because larger ones do not mask them.

Fourier transform/integral is the primary tool to analyze a periodic waveform,
the waveforms that do not repeat themselves regularly. The essence of the Fourier
transform of a waveform is to decompose or separate the waveform into a sum of
sinusoids of different frequencies. If these sinusoids sum to the original waveform
then Fourier transform of the waveform has been determined. The pictorial
representation of the Fourier transform is a diagram that displays the amplitude and
frequency of each of the determined sinusoids. The Fourier transform identifies or
distinguishes the different frequency sinusoids (and their respective amplitudes) that
combine to form an arbitrary waveform.

A physical process x, in the time domain given by x(t), can also be described
in the frequency domain with its amplitude X and frequencies f, by X(f).
Mathematically, this relationship is stated as:

∫
∞

∞−

−= dfefXtx iftπ2)()(

which is a linear operation.

TLFeBOOK

312 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

Fourier transform equation transforms functions coming from, and extending
to infinity. In real-world application, however, this is not practical. More often than
not, only a small section of this continuum is to be transformed. Furthermore,
analysis on a digital computer requires the function to be sampled discretely in time.
Thus, a continuous waveform will be represented as a series of impulses whose
magnitude is equal to the amplitude of the waveform for that time step, each
separated by a constant interval determined by the sampling rate.

The sampling rate is a very important factor when considering analyzing some
function of time. The Nyquist theorem, fc= 1/2, states that the critical frequency fc,
or the maximum frequency seen in the sampling process, is half that of the sampling
rate. If the signal on samples is not bandwidth limited to fc, a process called aliasing
occurs from which information from above fc is folded back into the sampling
bandwidth. This results in an incorrect transform. High-quality-low-pass filters must
be used to artificially bandwidth limit the waveform before sampling.

There are two types of Fourier transforms: Discrete Fourier Transform (DFT)
and Fast Fourier Transform (FFT). For N values of data, the DFT requires N2
complex operation. For data samples of moderate size, the direct determination of
the DFT can be extremely time-consuming. The FFT is an algorithm that has been
developed to compute the DFT in economical fashion. It utilizes the results of
previous computation to reduce the number of operations. In particular, it exploits
the periodicity and symmetry of trigonometric functions to compute the transform
with approximately N log2 N operations (Brigham, 1974).

Power Spectral Density
Spectral analysis, sometimes called ‘spectrum analysis,’ is the name given to

methods of estimating the spectral density function, or spectrum of a given time
series. The power spectral density, PSD, describes how the power (or variance)
of a time series is distributed with frequency. Mathematically, it is defined as the
Fourier Transform of the auto correlation sequence of the time series. Spectral
analysis is not only concerned with looking for ‘hidden periodicities’ in the data, but
also with estimating the spectrum over the whole range of frequencies.

Spectral analysis is mainly concerned with purely indeterministic or stochastic
series, which have a continuous spectrum, but also can be used for deterministic
series to pick out periodic component in the presence of noise. Deterministic series
is referred to as a time series, which can be predicted exactly. But most time series
are stochastic, that is the future is only partly determined by past values. For
stochastic series, exact predictions are impossible and must be replaced by the idea
that future values have a probability distribution, which is conditioned by knowledge
of past values. Wind speed data are categorized as stochastic series.

TLFeBOOK

Design Wind Speed 313

A natural way of estimating the power spectral density function is by using the
periodogram. The averaged periodogram is called the spectrum of the data
provided, in this case, the wind speed. It gives the distribution of the variance of wind
speed as function of frequency. The variance of each point is equal to the expected
value at the point. By averaging together 10-30 periodograms, the uncertainty in the
value at each frequency can be reduced.

In this chapter, interpretation of the wind speed power spectrum plots consists
of identifying the frequency ranges over which noticeable peaks in power or energy
occur, observing any trends and comparing energy levels for different wind records
(Nezih & Davras, 1983).

Cross-Spectral Density
In another context, the cross-spectral density function is a technique for

examining the relationship between two time series over a range of frequencies in
the frequency domain. The cross-spectrum of a discrete bivariate process measured
at unit intervals of time is defined as the Fourier transform of the cross-covariance
function.

The ordinate value in all the cross-spectrum plots represents the gain factor,
which is essentially a regression coefficient of the second time series on the first. For
this project, cross-spectral density is applied in the situation of wind speed records
at two different heights, i.e., 43.9m and 28.1m for both type of data: daily maximum
and 10 minute intervals.

Turbulence Intensity
Turbulence intensity is a measure of the amplitude of the velocity fluctuations,

which occur in the flow. It is proportional to the frequency of turbulent or eddies
angular velocities, which is a rough estimate of the degree of violence of turbulent
fluctuation. The energy content of a large eddy is much greater than that of a small
one for a given intensity, and energy is transferred from larger eddies to smaller ones.

Turbulence intensity is calculated by dividing the standard deviation of the wind
speed with the mean value of the wind speed. One of the causes of atmospheric
turbulence is terrain roughness; hence it must also be an important factor affecting
the intensity of turbulence. Its effect is twofold. Firstly, the increase of site roughness
will increase the turbulent intensity. Secondly, for the same terrain roughness, the
intensity of turbulence is height dependent: that is, it decreases with increase of
altitude.

Applications
Adherence to current Code of Practice has not completely protected structures

from failures. Codes have to be continually updated and improved. At the same

TLFeBOOK

314 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

time, there is a need to be a balance between degree of safety and economics. In
hurricane areas for instance, it may be uneconomical to build against a storm, which
may never happen. The approach here is to see if Fast Fourier Transform (FFT)
which includes Power Spectral Density (PSD), Cross Spectral Density (CSD), and
Turbulence Intensities (I), could produce results that could improve the basis of the
code. Meteorological data, including wind speed, is a local phenomenon, which
differs from one place to another. Design codes developed elsewhere, such as the
British Standard (BS) and the American National Standard (ANSI), are therefore
not suitable for the Malaysian case. Geological differences in terms of different
climates and topography, and choice of life duration of a structure, are significant
features that cannot be applied globally. We need to establish a code of practice
of our own in order to derive more realistic structural analysis and design.

The study of wind loads by using computational intelligence algorithm is a new
method to be explored and applied in structural engineering field. Norville et al.
conducted such a study. The work concentrated on validation of wind data
recorded at the Moro test site by the Bonneville Power Administration. The scope
of the project was mainly concerned with determining wind and response
characteristics. The analysis includes plots of time histories, histograms, power
spectra, cross spectra and determination of statistical properties. The analysis in
frequency domain is done by FFT algorithm using the International Mathematical
and Statistical Libraries (IMSL) routines (Norville et al., 1985).

Liew also conducted the same study. The work focused on frequency domain
analysis of the energy contents of the wind speed. The analysis was based on actual
time series and on the selected model of time series and was performed in power
spectrum plot (Liew, 1977).

DATA COLLECTION
Two sources of data were studied in this project. First, data of 95% confidence

level of maximum wind speed, which recorded annually, for 30 different stations
throughout the whole Malaysia were obtained form Malaysian Meteorological
Stations (MMSs). Second, data recorded in an interval of every 10 minutes and a
daily maximum within a certain period in the year 1998 and 1999 obtained from a
meteorological station, which is situated in Universiti Malaya (UM).

However, only a total of eleven case studies were carried out to see the effect
of FFT on wind speed data. Seven cases came from the MMS, which were
collected for the years 1948-1998; and four came from the UM station, which has
a wind tower with two anemometers, one at 28.1 meter (WS1) and another one
at 43.9 meter (WS2). These four data consisted of two daily maximal data, and
another two were based on wind speed data with 10-minute intervals. The data

TLFeBOOK

Design Wind Speed 315

used are not raw data; instead, a model data modeled as ARIMA (1,1,0) with the
parameter equal to -0.29451631, which according to Liew is generally sufficient
as a representative of the actual power spectrum (Cheong, 2000).

DATA PROCESSING AND ANALYSIS
MATLAB was utilized in this study.

Fast Fourier Transform (FFT)
In MATLAB, FFT is a built-in function. FFT computes the discrete Fourier

transform of a vector or matrix. When the sequence length is a power of two, FFT
uses a high-speed radix-2 FFT algorithm. The radix-2 FFT routine is optimized to
perform a real FFT if the input sequence is purely real; otherwise it computes the
complex FFT. This causes a real power-of-two FFT to be about 40% faster than
a complex FFT of the same length. When the sequence length is not an exact power
of two, a sequence algorithm finds the prime factors of the sequence length and
computes the mixed-radix discrete Fourier transform of the shorter sequences.

Power Spectral Density (PSD) and Cross-Spectral Density
(CSD)

In MATLAB, PSD estimates power spectral density of a signal and CSD
estimates cross-spectral density of two signals. Pxx=psd(x) estimates the power
spectrum of the sequence x. Pxy=csd(x,y) estimates the cross-spectral density of
the length n sequences x and y. Both of the functions above use the Welch method
of spectral estimation, which uses certain values of nFFT, Fs, window and noverlap.
nFFT specifies the FFT length that PSD or CSD uses to determine the frequencies
at which the power spectrum or cross spectrum is estimated. Fs is a scalar that
specifies the sampling frequency. window specifies a windowing function and the
number of samples PSD or CSD uses in its segmenting of the x and y vectors.
noverlap is the number of samples by which the segments overlap. Welch method
applied Hanning window with non-overlap and 95% confidence interval (Thomas
et al., 1994).

RESULTS AND DISCUSSIONS
The data processing and analysis included periodogram, PSD, turbulence

energy, TI and cycle lengths. Figure 1- Figure 3 are examples of results from one
of the seven stations, namely Kuala Terengganu.

TLFeBOOK

316 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

The periodogram is an initial means of estimating PSD function. The average
of 10-30 periodograms is the spectrum of the wind speed. The PSD indicates the
change of variance of fluctuations in the winds with frequency of contributory wave.
In this study, interpretation of wind speed PSD plots consists of identifying the
frequency ranges over which noticeable peaks in energy occur, observing any
trends and comparing energy levels for different wind records.

Variation of TI with height above mean sea level for these stations cannot be
compared due to different terrain roughness. From the point view of safety, wind

Figure 2: Plot of power against period (Kuala Terengganu, from years
1948 to 1998)

10
-4

10
-3

10
-2

10
-1

0

2

4

6

8

10

12

14

16

18

20
Power Spectral Density Estimate

Frequency (cycles/year)

Po
w

er
 S

pe
ct

ru
m

 (m
/s

)2

Model
Actual

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

P
ow

er

cycles/year

Periodogram

Figure 1: Periodogram of wind speed data (Kuala Terengganu, from
years 1948 to 1998)

TLFeBOOK

Design Wind Speed 317

Station Cycle length
Kuala Terengganu 50 years

Bayan Lepas 2.2727 years
Ipoh 4.4545 years

Mersing 47 years
Alor Star 49 years
Sandakan 44 years
Sitiawan 50 years

Daily maximum
WS1

2.4545 days

Daily maximum
WS2

2.44 days

10-minute interval
WS1

143.6667 min

10-minute interval
WS2

143.3333 min

Table 1: Results of cycle length of wind speed recorded for all types of
data

Figure 3: Plot of power against period (Kuala Terengganu, from year
1948 to 1998)

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

P
ow

er

Period(years/cycle)

Period=50

velocity used in the analysis of a structure subjected to wind force should not be the
maximum observed so far, but one, which may occur once in “cycle length” years
depending on the importance of the structure. The cycle lengths for all data have
been computed by FFT algorithm. The results are tabulated in Table 1.

TLFeBOOK

318 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

CSD function is a tool for examining the linear relationship between two time
series over a range of frequencies. CSD is only applied in the situation of wind speed
records at two different heights, which are 43.9m and 28.1m for both types of data:
daily maximum and 10-minute intervals. Direct comparison can be done for the UM
data. Both data show that at the higher level, WS1, energy spectrum is greater due
to lower viscosity effects and smaller site roughness, i.e., less obstruction.

The results for maximum power, power spectral density and frequency
recorded for all stations are given in Table 2. The power spectral density indicates
the change in variance of the fluctuations in the signal with the frequency of the
contributory wave. It is useful to plot the product of power spectra against the
logarithm of the frequency. The advantage is that the area under the curve between
any two frequencies gives the true measure of the energy in that frequency range.
Generally, the maximum turbulent energy for these stations is between the power
spectral range of 12 to 24 m/s2. Comparison between these seven stations shows
that wind data in Sitiawan contains the maximum turbulent energy; meanwhile the
minimum energy observed is at Bayan Lepas. The results for mean wind speed,
standard deviation and turbulence intensity obtained for all stations are given in
Table 3.

Turbulence intensity (TI) is calculated by dividing the standard deviation of the
wind speed with the mean wind speed. TI is used to measure the amplitude of the

Station Maximum
Power
(MP)

Frequency of
MP

(cycles/year)

Power Spectral
Density (PSD)

(m/s)2

Frequency of
PSD

(cycles/year)
Bayan Lepas 2250 0.025 16 0.004
Ipoh 1500 0.044 12 0.0012
Mersing 3000 0.022 24 0.002
Alor Setar 175 0.025 15 0.008
Sandakan 4500 0.025 24 0.003
Sitiawan 2400 0.018 15 0.0025
Kuala Terengganu 1900 0.4 24 0.0015
 Maximum

Power
(MP)

Frequency of
MP

(cycles/day)

Power Spectral
Density (PSD)

(m/s)2

Frequency of
PSD

(cycles/day)
Daily Maximum WS1 700 0.4 7 0.0017 –0.0028
Daily Maximum WS2 550 0.4 7 0.0017-0.0028
 Maximum

Power
(MP)

Frequency of
MP

(cycles/10 min)

Power Spectral
Density (PSD)

(m/s)2

Frequency of
PSD

(cycles/10 min)
WS1 (10 minute) 30 000 0.008 2.25 0.0001
WS2 (10 minute) 18 000 0.008 1.4 0.0001

Table 2: Results of MP, PSD and frequency recorded from all stations

TLFeBOOK

Design Wind Speed 319

velocity fluctuations which occur in the flow and proportional to the angular
velocities of the eddies, which is a rough estimate of the degree of violence of
turbulent fluctuation.

One more important feature shows by almost all data that most of the energy
of the turbulence eddies is concentrated in the lower frequency range. The spectra
obtained for low frequencies, therefore, results in a more rational static analysis than
the one based on extreme mean winds. Mean wind spectra are useful for arriving
at design mean wind speed required for computing basic pressure as incorporated
by various design codes.

CONCLUSION
From the study, mean wind spectra covering the entire range of frequencies

have been obtained. The presentation of mean wind speed in the form of spectra
provides important information in respect to energy at different frequencies at which
the spectral values are the highest. The maximum scale of eddy motion that contains
the maximum energy is one of the most important indices for structural design
purpose. The major factor affecting the response of structures under wind loading
is the dynamic characteristic of atmospheric turbulence. This can best be represented
by its correlation functions and spectral functions.

FUTURE WORK
The following study gives a clear view on the transformation of wind speed data

into a more useful engineering tool. This result can also be applied in wind energy

Station/Type of Data Mean Wind Speed
(m/s)

Standard
Deviation

Turbulence
Intensity

Mersing 23.3 1.0 0.044
Ipoh 23.2 4.0 0.174
Sandakan 17.1 1.8 0.104
Sitiawan 18.3 2.7 0.149
Kuala Terengganu 20.8 2.0 0.095
Alor Setar 20.4 2.3 0.115
Bayan Lepas 20.7 2.6 0.125
Daily maximum WS1 6.5 1.8 0.272
Daily maximum WS2 6.2 1.7 0.276
WS1 (10 minute) 1.3 1.0 0.722
WS2 (10 minute) 1.2 0.7 0.597

Table 3: Results of mean wind speed, standard deviation and turbulence
intensity obtained from all stations

TLFeBOOK

320 Ismail, Ramli, Ibrahim, Majid, Sundaraj and Badaruzzaman

studies. Further studies and research are required on different types of wind
conditions to see the effects of FFT.

REFERENCES
Avitable, P. (2001). Experimental modal analysis. Sound & Vibration: Structural

Analysis, 35(1), 20–31.
Brigham, E.O. (1974). The Fast Fourier Transform. NJ: Prentice Hall.
Cheong, W.V. (2000). Time Series Modelling of Wind Speed in Malaysia.

Graduation Thesis. Department of Civil Engineering, University of Malaya,
Kuala Lumpur.

Houghton, E.L. & Carruthers, N.B. (1976). Wind Forces on Buildings and
Structures. London: Edward Arnold Ltd.

Liew, S.H. (1997). Time series analysis and frequency contents of wind loads.
Journal of Institution of Engineers, Malaysia, 58(1).

Nezih, C.G. & Davras, Y. (1983). Discrete Fourier Transformation and Its
Application to Power Spectra Estimation. Amsterdam, Netherlands:
Elsevier Scientific Publishing.

Norville, H.S., Metha, K.C. & Farwagi, A.F. (1985). 500 kV Transmission
Tower/Conductor Wind Response. Report Submitted to the Bonneville
Power Administration, Texas Tech University, Lubbock, Texas.

Sachs, P. (1972). Wind Forces in Engineering. Oxford, UK: Pergamon Press.
Simiu, E. & Scanlan, R.H. (1977). Wind Effects On Structures. CA: John Wiley

& Sons.
Thomas, P.K, Loren, S. & John, N.L. (1994). Signal Processing Toolbox

User’s Guide. The MathWorks. Inc.
Ventura, C.E. (2001). Overview of Vibration Testing of Large Structures.

Course Notes on Modal Identification of Output-Only Systems, Orlando,
Florida, USA.

TLFeBOOK

Computational Intelligence in Control 321

About the Authors

Copyright © 2003, Idea Group Inc.

Masoud Mohammadian has completed his Bachelor, Master and PhD in
Computer Science. His research interests lie in adaptive self-learning systems, fuzzy
logic, genetic algorithms, neural networks and their applications in robotics, control,
industrial automation, financial and business problems which involve real time data
processing, planning and decision making. He is a member of over 30 international
conferences and he has chaired several international conferences in computational
intelligence and intelligent agents. He is currently a senior lecturer at the school of
computing at the University of Canberra in Australia. He is a member of many
professional (computing and engineering) organizations . He is also currently the
vice chair of the Institute of Electrical and Electronic Engineering (IEEE) ACT
section.

Ruhul Sarker received his PhD in 1991 from DalTech, Dalhousie University,
Halifax, Canada, and is currently a senior lecturer in Operations Research at the
School of Computer Science, University of New South Wales, ADFA Campus,
Canberra, Australia. Before joining at UNSW in February 1998, Dr. Sarker
worked with Monash University, Victoria, and the Bangladesh University of
Engineering and Technology, Dhaka. His main research interests are Evolutionary
Optimization, Data Mining and Applied Operations Research. He was involved
with three edited books either as editor or co-editor, and has published more than
80 refereed papers in international journals and conference proceedings. He is also
the editor of ASOR Bulletin, the national publication of the Australian Society for
Operations Research.

Xin Yao received the BSc degree in computer science from the University of
Science and Technology of China (USTC), Hefei, the MSc degree in computer
science from the North China Institute of Computing Technologies (NCI), Beijing,
and the PhD degree in computer science from the USTC, Hefei, in 1982, 1985, and
1990, respectively. He is currently a professor of computer science at the University

TLFeBOOK

322 About the Authors

of Birmingham, Birmingham, England. Xin Yao is an associate editor or a member
of the editorial board of six international journals, including IEEE Transactions on
Evolutionary Computation, and an editor/co-editor of nine journal special issues.
His major research interests include combinations between neural and evolutionary
computation techniques, evolutionary learning, co-evolution, evolutionary design
and evolvable hardware, neural network ensembles, global optimization, simulated
annealing, computational time complexity and data mining.

* * *

Hussein A. Abbass gained his PhD in Computer Science from the Queensland
University of Technology, Brisbane, Australia. He also holds several degrees
including Business, Operational Research, and Optimisation and Constraint Logic
Programming, from Cairo University, Egypt, and Artificial Intelligence, from the
University of Edinburgh, UK. He started his career as a systems administrator. In
1994, he was appointed associate lecturer at the Department of Computer Science,
Institute of Statistical Studies and Research, Cairo University, Egypt. In 2000, he
was appointed lecturer at the School of Computer Science, University of New
South Wales, ADFA Campus, Australia. His research interests include Swarm
Intelligence, Evolutionary Algorithms and Heuristics where he develops approaches
for the Satisfiability problem, Evolving Artificial Neural Networks, and Data
Mining. He has gained experience in applying Artificial Intelligence Techniques to
different areas including Budget Planning, Finance, Chemical Engineering (heat
exchanger networks), Blood Management, Scheduling, and Animal Breeding and
genetics.

C. Alippi obtained the DrIng degree in Electronic Engineering summa cum laude
in 1990 and the PhD in Computer Engineering in 1995, both from Politecnico di
Milano, Milano, Italy. His further education includes research work in computer
sciences carried out at the University College London and the Massachussets
Institute of Technology. Currently, C.Alippi is an associate professor in Information
Processing Systems at the Politecnico di Milano. His interests include neural
networks (learning theories, implementation issues and applications), composite
systems and high level analysis and design methodologies for embedded systems.
His research results have been published in more that 80 technical papers in
international journals and conference proceedings. He is a senior member of IEEE.

T. G. B. Amaral, received the DiplIng and MS degrees in Electrical Engineering
from the Faculty of Science and Technology (FCT), University of Coimbra,
Portugal, in 1993 and 1997, respectively. He is currently pursuing the PhD degree,

TLFeBOOK

Computational Intelligence in Control 323

at the FCT. Since 1996 he is a member of the teaching staff at Electrical Engineering
Department of Superior Technical School of Setúbal – Polytechnic Institute of
Setúbal. He is currently adjoint professor in the Electrical Engineering Department
of Superior Technical School of Setúbal – Polytechnic Institute of Setúbal. His
interests include computer vision, image processing, modeling and control of
dynamic system.

W. H. W. Badaruzzaman obtained his BSc (Hons) Civil & Structural Engineering
and MSc Structural Engineering from the University of Bradford, UK ,in 1984 and
1986, respectively. Completed his PhD degree in Structural Engineering at
University of Wales, Cardiff, UK, in 1994. Currently, the head of the Department
of Civil & Structural Engineering, University Kebangsaan Malaysia. A corporate
member of the Institution of Engineers Malaysia (IEM) and a registered professional
engineer with the Board of Engineers Malaysia. Is actively involved with the
working Group Committee in Wind Loads for building structures in Malaysia.

J.-M. Bauschat, a native of Germany, studied Aircraft Engineering and completed
his final examination at the University of Braunschweig, Germany. In 2001 he joined
the teaching staff at the Technical University of Berlin, leading subjects in flight
mechanics, experimental flight mechanics, and flight testing using a Dornier 128 and
the German Aerospace Center (DLR) flight test-bed ATTAS (Advanced
Technologies Testing Aircraft System). Prior to his current position, he served as
a scientist at the Institue of Flight Systems of the DLR and project director of the
DLR project ATTAS In-Flight Simulation. He also previously served as head of
the DLR Group of Applied Flight Control. He has published articles in 18 referred
publications.

Judith Bishop is professor of Computer Science at the University of Pretoria,
South Africa, a position she has held since 1991. She has a PhD from Southampton
University, UK, in the area of code generation for new computer architectures. Her
research interests are programming languages, distributed systems and web
technology. She is co-editor of IEEE Software and on the editorial board of
several other journals. She chairs the IFIP committee WG2.4 on Software
Implementation Technology and is South Africa’s representative on IFIP Technical
Committee 2 on Programming. She has served on many international and local
programme committees and advisory boards and is a strategic advisor on Information
Technology to the National Research Foundation.

Pierre Borne is professor “de Classe Exceptionnelle” at the “Ecole Centrale de
Lille”;director of Research of this institution; and head of the Automatic Control

TLFeBOOK

324 About the Authors

Department. He has been president of IEEE/SMC society (2000-2001) and has
been IMACS vice president (1988-1994). He is chairman of the IMACS
Technical Committee on “Robotics and Control Systems.” He was nominated a
fellow of IEEE in 1996 and received the IEEE Norbert Wiener Award in 1998. He
is author or co-author of more than 250 journal articles, book chapters, a scientific
dictionary and communications in international conferences and 14 books on
automatic control. He is a fellow of the Russian Academy of Non-Linear Sciences.
He is listed in the Who’s Who in the World. In 1997, he was nominated for the
“Tunisian National Order of Merit in Education” by the president of the Tunisian
Republic, and in 1997 he was named an honorary member of the IMACS board
of directors. In 1999, he was promoted in France to “Officier dans l’ordre des
Palmes Académiques.” In 2000, he received the IEEE Third Millennium Medal. His
activities concern automatic control, robust control and optimization in planning and
scheduling, including implementation of fuzzy logic, neural nets and genetic algorithms.
He can be reached at: p.borne@ieee.org.

M. M. Crisóstomo was born in Coimbra, Portugal, in 1952. He received his BSc
degree from the Department of Electrical Engineering and Computer Science of the
University of Coimbra in 1978, his MSc from the Technical University of Lisbon,
Portugal, in 1987 and his PhD from Brunel University, UK, in 1992. He is currently
a lecturer in the Department of Electrical Engineering and Computer Science of the
University of Coimbra and a researcher at the Institute for Systems and Robotics
in Coimbra, Portugal. His main research interests are robotics, sensors and
actuators for robots, classical and fuzzy control systems.

J.L. Fernández-Villacañas Martín graduated in Physics from the Complutense
University in Madrid and received his PhD in Astrophysics in 1989. He then served
as a member of the Theoretical Physics Department in Oxford University until he
moved to British Telecom Research Labs in 1992. At BT he was a senior
researcher in Artificial Life and Evolutionary Computation. He left the labs to join
the European Commission in 1999 as a project officer in Future Emerging
Technologies. Since October 2000 he is a visiting professor at the Charles III
University in Madrid at the Department of Signal Theory and Communications. Dr.
Martín has published extensively and has been chair and invited speaker of a
number of conferences and events. His current field of work is GA theory,
information ecosystems and complexity in physical systems.

M. Gestwa was born in Gelsenkirchen in 1966. From 1988 to 1991 he was trained
as a computer assistant at the Institute of Flight Research. Subsequently he studied
Computer Science at the Technical University of Braunschweig with a focus on

TLFeBOOK

Computational Intelligence in Control 325

computational intelligence. During his studies he worked as a freelance software
developer in the field of real-time application. Since 1997 he has worked as a
Scientist at the Institute of Flight Research. His current research project deals with
the cognitive pilot simulation (CoPS).

Hongfei Gong, born in 1972, graduated from the Department of Plant Protection,
Zhejiang University, China, in 1993. After graduation, he became a research
assistant at the Biotechnology Institute of Zhejiang University. His research work
involved biological control, protein purification and gene isolation in plant protection
activities. In 1999, he came to the Instituto Superior Tecnico, Technical University
of Lisbon, Portugal, for his PhD study in Computer Science. His current research
interests are: Artificial Life, Genetic Algorithms, Decision System and its application
in Agriculture and Ecosystem.

Slim Hammadi is an associate professor of Production Planning and Control at the
Ecole Centrale de Lille where he obtained a PhD in 1991. He is a member of IEEE/
SMC and has served as a referee for numerous journals, including the IEEE
Transactions on SMC. He was co-organizer of a Symposium (IMS) of the
IMACS/IEEE SMC Multiconference CESA’98 held in Hammamet (Tunisia) in
April 1998. He has organized several invited sessions in different SMC conferences
where he was session chairman. His research is related to production control,
production planning, computer science and computer-integrated manufacturing.
He can be reached at: slim.hammadi@ec-lille.fr

Tetsuya Higuchi received BE, ME, and PhD degrees in Electrical Engineering
from Keio University, Japan. He heads the New Circuits / System Technology
Group in MIRAI Project, Advanced Semiconductor Research Center (ASRC),
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba,
Japan. His current interests include evolvable Hardware Systems, Parallel
Processing Architecture in Artificial Intelligence, and Adaptive Systems. Dr.
Higuchi received the Ichimura Award in 1994 and the ICES Best Paper Award in
1998. He is a member of the Japanese Society for Artificial Intelligence (JSAI) and
of the Institute of Electronics, Information and Communication Engineers (IEICE).

Z. Ibrahim graduated in 1990 with a BSc (Hons) in Civil Engineering from
Middlesex University, London, UK. She continued with her MSc degree at
Liverpool University, UK, in Structural Engineering (1994). Currently a lecturer in
Structural Analysis and Dynamics at the University of Malaya, she is actively
involved with the working Group Committee in Wind Loads for building structures
in Malaysia.

TLFeBOOK

326 About the Authors

Z. Ismail graduated in 1985 with a BA (Hons) in Mathematics from SUNY,
Newpaltz, USA. She completed her MA in Applied Mathematics from Temple
University, in 1987. She was a lecturer teaching mathematics at the Institute of
Technolgy MARA, Malaysia, between 1985 to 1992, before joining the University
of Malaya as a lecturer in the Department of Civil Engineering, a position she still
holds. Currently, pursuing her PhD degree in Structural Dynamics at the Universiti
Malaya, Malaysia, and is actively involved with the working Group Committee in
Wind Loads for building structures in Malaysia.

Imed Kacem was born in Eljem, Tunisia, in 1976. He received the EngDipl degree
of the ENSAIT (French “Grande Ecole”) and the DEA degree (MSc degree) from
the University of Lille1, France, in Control and Computer Sciences, both in
2000.He is currently pursuing a PhD in Automatic and Computer Science at
“Laboratoire d’Automatique et Informatique de Lille” of the “Ecole Centrale de
Lille,” France. Mr. Kacem was selected from among the young Tunisian engineers
of the “Grandes Ecoles” to receive the Tunisian Presidential Prize for 2001.He has
served as a referee for the Int CIMCA’01, the Int SMC’02 Conferences and the
IEEE/SMC Transactions. His research is related to the evolutionary optimization
methods for discrete events system, computer science and operational research.
He can be reached at: imed.kacem@ec-lille.fr.

Rens Kortmann studied Cognitive Science and Engineering at the Rijksuniversiteit
Groningen and finished his Master’s dissertation in 1998. The dissertation was
written at the Artificial Intelligence Laboratory of the University of Edinburgh,
where he performed a one-year research internship. Since 1998 he is appointed at
the Universiteit Maastricht, The Netherlands, as a PhD student, where he works on
the modelling of visually guided behaviour in computer simulations and robots.

Yong Liu received his BSc degree from Wuhan University, Wuhan, in 1988; his
MSc degree from Huazhong University of Science and Technology, Wuhan, in
1988; his PhD from Wuhan University, Wuhan in 1994; and the University of New
South Wales, Canberra, in 1999. He is currently an associate professor at the
University of Aizu, Japan. He was a research fellow at AIST Tsukuba Central 2,
National Institute of Advanced Industrial Science and Technology, Japan, in 1999.
He was a lecturer in the State Key Laboratory of Software Engineering, Wuhan
University in 1994. His research interests include evolutionary algorithms, neural
networks and evolvable hardware.

Taksiah A. Majid graduated in 1990 with a BSc (Hons) in Civil Engineering from
Middlesex University, London, UK. She completed her MSc and PhD degrees at

TLFeBOOK

Computational Intelligence in Control 327

Liverpool University, UK, in Structural Dynamics (1996). Currently a lecturer in
Structural Analysis and Dynamics at Universiti Sains Malaysia, she is actively
involved with the working Group Committee in Wind Loads for building structures
in Malaysia.

P. Marrow began his career as a biologist, gaining a First Degree in Biology from
Oxford University and a Coctorate in Mathematical Biology from York University.
Postdoctoral research at Leiden and Cambridge Universities addressed evolutionary
dynamics, coevolutionary theory and the evolution of reproductive strategies. In
1997 he joined a research group established by BT to focus on biologically inspired
solutions to computing and telecommunications problems. Since then his research
has drawn upon various aspects of biological systems in developing computational
applications. Now a senior research scientist in the Intelligent Systems Laboratory
BTextract, UK, he leads a team investigating software agent systems for information
management, inspired by interactions between organisms in natural ecosystems.

Yoshiyuki Matsumura received BS and MS degrees in Mechanical Engineering
from Kobe University, Kobe, Japan, in 1998 and 2000, respectively. He is
currently working toward the PhD in the Graduate School of Science and
Technology, Kobe University. Also, he is a research fellow of the Japan Society of
the Promotion of Science (DC1). His research interests are evolutionary computation,
evolutionary artificial neural networks and evolutionary robotics. Mr. Matsumura
is a student member of the IEEE, SICE (Society of Instrument and Control
Engineers), ISCIE (Institute of System, Control and Information Engineers) and
JSPE (Japan Society of Precision Engineering).

Charles S. Newton is the head of Computer Science, University of New South
Wales (UNSW), at the Australian Defence Force Academy (ADFA) campus,
Canberra. Dr. Newton is also the deputy rector (Education). He obtained his PhD
in Nuclear Physics from the Australian National University, Canberra, in 1975. He
joined the School of Computer Science in 1987 as a senior lecturer in Operations
Research. In May 1993, he was appointed head of School and became professor
of Computer Science in November 1993. Prior to joining ADFA, Prof. Newton
spent nine years in the Analytical Studies Branch of the Department of Defence. In
1989-91, he was the national president of the Australian Society for Operations
Research. His research interests encompass Group Decision Support Systems,
Simulation, Wargaming, Evolutionary Computation, Data Mining and Operations
Research Applications. He has published extensively in national and international
journals, books and conference proceedings.

TLFeBOOK

328 About the Authors

A. D. Nurse was appointed to a lectureship in Stress Analysis in the Department
of Mechanical Engineering at Loughborough University, UK, in 1992 and was
promoted to senior lecturer in 2000. He has published over 25 journal papers
mainly in the application of inverse techniques for extracting information from
experimental data. He has also prepared over 40 conference contributions
involving work on Photoelasticity, Bimaterial Interface Cracks, Adhesive Joints,
Finite Elements, and Damage Detection in Composites. He sits on the advisory
board for FEA Ltd. (www.lusas.com), which produce the finite element software
Lusas. He is also secretary of the Plastics Design Committee for the Institute of
Materials. Dr. Nurses's research interests include Computer-Aided Engineering,
Inverse Analysis, and Composite Materials.

Kazuhiro Ohkura received BS, MS, and PhD degrees in Computer Science from
Hokkaido University, Sapporo, Japan, in 1988, 1990 and 1997, respectively. He
is an associate professor in the Department of Mechanical Engineering, Kobe
University, Japan. Before joining Kobe University as a research associate in 1993,
he was with Fujitsu Laboratories, Ltd. for three years. In 1998, he was a visiting
research fellow in the School of Cognitive and Computing Science, University of
Sussex, UK. His research interests are evolutionary computation, reinforcement
learning, artificial life, robotics and manufacturing systems. He is a member of the
SICE, ISCIE, JSPE, JSME (Japan Society of Mechanical Engineers) and RSJ
(Robotics Society of Japan).

D. C. Panni is a PhD candidate in the Wolfson School of Mechanical and
Manufacturing Engineering at Loughborough University, UK. His research interests
cover the fields of Genetic Algorithms, Finite Element Analysis, Inverse Analysis
and The Design of Advanced Composite Materials. In particular he has specialised
in the use of novel methods of integrating GAs and the FE method to solve a range
of structural engineering problems.

V. Fernão Pires received his BS degree in Electrical Engineering from the Institute
Superior of Engineering of Lisbon, Portugal, in 1988 and his MS and PhD degrees
in Electrical and Computer Engineering from the Technical University of Lisbon,
Portugal, in 1995 and 2000, respectively. Since 1991 he is a member of the
teaching staff in the Electrical Engineering Department of Superior Technical School
of Setúbal – Polytechnic Institute of Setúbal, Portugal. Presently he is a professor,
teaching Power Electronics and Control of Power Converters. He is also researcher
at Centro de Automática of UTL. His present research interests are in the areas of
Low-Distortion Rectifier topologies, Converter Control, Modelling and Simulation.

TLFeBOOK

Computational Intelligence in Control 329

Eric Postma studied Cognitive Science at the Catholic University of Nijmegen and
received his Master’s degree in 1989. Since that year he is affiliated with the
Computer Science Department of the Universiteit Maastricht, The Netherlands,
where he is currently appointed as associate professor and coordinating the Neural
Networks and Adaptive Behaviour group. Dr. Postma has published about neural
networks and adaptive behaviour in many international journals and conference
proceedings.

Anet Potgieter is currently employed by CoreProcess (Pty) Ltd. where she holds
the position of systems architect. She has extensive industrial experience in
embedded distributed applications as well as supply chain management applications.
She received her MSc (Computer Science) from the University of Pretoria, South
Africa, in 1994, and is currently pursuing her PhD in the area of software engineering
and component-based systems, under the instruction of Professor Judith Bishop.
Her research interests include software engineering, distributed artificial intelligence,
data mining and web-technology. She is a student member of the IEEE and the
ACM.

N. H. Ramli graduated in 2001 with a First Class Degree in Civil Engineering from
the University of Malaya, Malaysia. Currently pursuing her PhD degree in Steel
Structures at Sheffield University, UK, she is also a tutor at the Department of Civil
Engineering, University of Malaya, Malaysia.

Agostinho Claudio da Rosa is director of Evolutionary Systems and Biomedical
Engineering Lab at the Institute for Systems and Robotics (LaSEEB-ISR), Lisbon,
Portugal, and associate professor of the Department of Electrical Engineering and
Computers of Technical University of Lisbon (UTL). She previously served as
visiting professor at the School of Medicine Stanford University in 99-00 . After
graduation from the Electrical Engineering & Computing at Instituo Superior
Tecnico(IST) in 1978, MSc and PhD degrees in Electronic Engineering and
Computers, in 1984 and 1990 from IST-UTL. Her main research interests include:
Artificial Life, Biomedical Engineering, Signal and Image Processing, Evolutionary
Computation and Computational Intelligence.

M. Shackleton graduated from Sheffield University in Computer Science. He
joined the Image Processing and Computer Vision group at BT in 1989. In this
group he carried out research into novel computer vision algorithms, many inspired
by natural computation techniques. In 1996 Mr. Shackleton moved across to the
Future Technologies Group at Adastral Park, whose remit is to develop novel
solutions to BT’s problems using a nature-inspired approach. Within this group he

TLFeBOOK

330 About the Authors

has carried out research including, amongst other projects, developing a novel
“information chemistry” architecture, and evolutionary computation techniques.
This work has led to patents, international papers and book chapters. He also
recently edited a special issue of the BT Technology Journal (October 2000) on
nature-inspired computation. He now leads the future technologies group, where
he works on research and applications within the domain of evolutionary computation
and adaptive systems, and exploitation of these technologies within the business.

D. P. Solomatine received the MS degree in Systems Engineering from the
Moscow Aviation Institute (University) in 1979. From 1979 to1990 he worked at
the Institute for Systems Analysis of the Russian Academy of Sciences (from 1986
as a Senior Researcher). He received his PhD in Systems and Management
Sciences in 1984. He actively collaborated with the International Institute for
Applied Systems Analysis (Austria). In 1989-90 he spent a year as a Researcher
at the Delft University of Technology, and since March 1990 he is a staff member
(from 2000, Associate Professor) of the Hydroinformatics section of the International
Institute for Infrastructural, Hydraulic and Environmental Engineering (IHE-Delft),
The Netherlands. His research interests include machine learning, data-driven
modeling, applications of chaos theory, global optimization and Internet-based
computing.

Ida Sprinkhuizen-Kuyper studied Applied Mathematics at the Universiteit van
Amsterdam and received her Master’s degree cum laude in 1973. She received her
PhD in Mathematics in 1979. From 1984 untill 1999 she worked for the Computer
Science Department of the Universiteit Leiden, and since 1999 she is affiliated with
the Computer Science Department of the Universteit Maastricht, The Netherlands.
Her main research interests are neural networks and evolutionary algorithms.

Pieter Spronck studied Computer Science at Delft University of Technology and
received his Master’s degree cum laude in 1996. Since 2001 he is affiliated as a
researcher with the Computer Science department of the Universiteit Maastricht,
The Netherlands, where he is also working on a PhD thesis. Before that, he worked
for 15 years in the field of Computer and Information Science as a developer,
researcher and project leader for several companies and a research institute.

R. J. Stonier is an associate professor at Central Queensland University, Australia.
He received his Bachelor's of Science (1968) and Honours (1969) in Mathematics
and completed a PhD (1978) in Mathematics at the University of Queensland. His
research interests are in non-linear control of multi-robot systems using Liapunov
theory and sliding mode, fuzzy logic and neural networks, evolutionary computation

TLFeBOOK

Computational Intelligence in Control 331

including evolution algorithms to learn fuzzy logic controllers in robot soccer and
fuzzy image enhancement filters, solutions to continuous nonlinear constrained
optimal control problems, problems of optimisation in VLSI, CPI prediction, and
irrigation strategies for water flow control in cropped soils.

G. Sundaraj obtained a Bachelor's degree in Civil Engineering with honours in
1999 from the Universiti Sains Malaysia. He is currently pursuing a master’s degree
in Civil Engineering from the same university. He is employed by the Construction
Industry Board of Development (CIDB), Malaysia, as a manager of the Research
and Development Unit, Technology Division at CIDB Malaysia. He is committee
member of the Malaysian Standard of Wind Loading Working Group and a
member of the Australasian Wind Engineering Society.

P. J. Thomas obtained his Engineering degree from Central Queensland University,
Australia, with First Class Honours in 1998. His current PhD research is centered
on the evolutionary learning of fuzzy control in robot-soccer. Other research
interests include digital image processing, digital signal processing, participation in
robot-soccer competitions, and fostering community awareness of science and
technology through robot-soccer.

Kanji Ueda is a professor of Mechanical Engineering at Kobe University, Kobe,
Japan. He has been engaged in research and teaching in the fields of manufacturing
engineering and systems for more than 25 years, during which time he has authored
more than 300 published papers. He has led the IMS Program Next Generation
Manufacturing Systems and the international project “Biological Manufacturing
Systems” of the Consortium for Advanced Manufacturing. He has been chairman
of the Committee on Manufacturing Systems of the College International for l’Etude
Scientifique des Techniques de Production Mecanique (CIRP) since 1998. His
research interests include biological manufacturing systems, intelligent artifacts,
robotics, emergent synthesis and artificial life. Professor Ueda is a member of
CIRP, JSPE, JSME, SICE, ISCIE, RSJ, Society for Manufacturing Engineers, and
Danube Adria Association for Automation and Manufacturing.

Simon X. Yang received his BSc degree in Engineering Physics from Peking
University, China; his first MSc degree in Biophysics from Academia Sinica in
Beijing; his second MSc degree in Electrical Engineering from the University of
Houston, USA, and his PhD in Electrical and Computer Engineering from the
University of Alberta, Canada. He has been an assistant professor of Engineering
Systems and Computing at the University of Guelph, Canada, since 1999.
Currently he is the director of the Advanced Robotics & Intelligent Systems (ARIS)

TLFeBOOK

332 About the Authors

Lab at the University of Guelph. His research areas include Robotics, Intelligent
Systems, Control Systems and Computational Neuroscience. He has published
more than 100 journal papers, book chapters and conference proceedings.

TLFeBOOK

Index 333

Copyright © 2003, Idea Group Inc.

A
adaptive landscapes 288
adaptive learning 130
agent 169
agricultural production 184
AIDA 149
aircraft cockpit 149
airplane system technology 150
ambient vibration testing 307
ant colony 171
Approach by Localization (AL) 241
artificial intelligence 170
Artificial Life modeling approach 185
Artificial Neural Networks (ANN) 197
attainment surfaces 222
ATTAS 149
autonomous agents 168, 170

B
Bactrocera oleae 184
Bayesian agencies 168
Bayesian agents 168
Bayesian networks 168, 169
behavior networks 170
binary alphabet 238
binary string 142
box-pushing controller 107
BTGP 280

C
Cartesian workspace 71
Chaos theory 215

civil engineering structures 304
classic coding 238
Classical Evolution Strategies (CES)

264
classification 200
climatic data 184
clustering 200
clusters 175
complex control systems 122
complex interaction protocols 170
computational intelligence 169
computer simulation 268
control vector 44
Controlled Evolutionary Approach

(CEA) 233, 243
conventional control difficult 43
coverage metrics 222
critical machine 234
Cross-Spectral Density (CSD) 302, 313
crossover 287
cycle-cutset conditioning 175
cycle-cutsets 175

D
damage detection 137
design wind load 302
Differential Evolution (DE) 219, 222
Discrete Fourier Transform (DFT) 312
doping 118

E
ecological system analysis 185
ensemble learning system 2

Index

TLFeBOOK

334 Index

epistasis variance 286
epoch 7
error ratio 222
Evolution Strategies (ES) 263
evolution strategies algorithms 264
Evolutionary Algorithm (EAs) 88, 104,

110, 116, 218, 219, 280
evolutionary biology 280
evolutionary computation context 280
Evolutionary Programming (EP) 263
existence of variation 281

F
Fast Evolution Strategies (FES) 265
Fast Fourier Transform (FFT) 302, 312
Finite Element (FE) 136
fitter mutants 286
flight simulation 150
Flight Training Devices (FTDs) 149
forced vibration methods 302
forced vibration testing 306
Fourier Transform 311
Frequency Response Function (FRF)

302
fuzzy amalgamation 89
fuzzy logic 122
fuzzy logic application 88
fuzzy logic controllers 89
Fuzzy logic systems 122
fuzzy pilot 151
fuzzy rule-based systems 197

G
general regression 43
General Regression Network (GRNN)

43
generational distance 222
generic neural network 25
genetic algorithm (GA) 123, 137, 238,

263
genetic diversity 283
genetic drift 285
genetic manipulations 246
Genetic Programming System (BTGP)

287
genetic reinforcement learning 106
Genetically Modified Organisms (GMO)

246
genotype 138
German Aerospace Center (DLR) 149
glide slope 154
Global Combined Discrete Recombina-

tion 268
Global External (GE) 112
Global Internal (GI) 112
global semantics 173
golden unit 23
ground based simulators 150
Gust Response Factors (GRF) 304

H
heat unit accumulation concept 187
helicopter control 43
hidden periodicities 312
Hierarchical Fuzzy Logic Systems 126
human decision maker 219

I
ILS tracking task 151
impact tests 307
information retrieval 279
intelligent components 168
intelligent control systems 43
interaction 170
inverse analyses 136
inverse system identification 137

J
Job-shop Scheduling Problem (JSP)

233
join-tree propagation 175

K
Khepera type 107
knowledge base (KB) 88
knowledge space 23

L
lay-up design 143
learning 2
Local External (LE) 112
Local Internal (LI) 112
local semantics 173

TLFeBOOK

Index 335

Lyapunov stability theory 71

M
machine learning 199
main rotor 45
makespan 234
Malaysian Wind Code 310
Man/Machine Interface (MMI) 148
Mapping Genetic Algorithm (MGA) 280,

287
Mixtures-of-Experts (ME) 4
model 198
model tree 208
Most Probable Explanation (MPE) 174
Multiobjective Evolutionary Algorithms

(MEAs) 218
Multiobjective Optimization Problems

(MOPs) 218
mutation 281
mutation variance 284

N
negative correlation learning 5
neighboring neurons 73
neural computation 23
neural controller configuration 114
neural network 42, 104
neural network methods 2, 70
neural variables 22
neutral mutants 286
next-generation 168
NN-based controllers 44
Noise 263
nominal data 200
Non-dominated Sorting Genetic Algo-

rithms (NSGA) 221
non-linear dynamics 215
non-serial dynamic programming

algorithms 175
nonstationary environment 69
nonstationary statistics 54

O
olive fly’s life cycle 186
olive trees 184
Operational Research (OR) 219

output vector 44

P
parameter sensitivity 82
Pareto Archived Evolution Strategy

(PAES) 222
pest management 183
phenotype 138
phenotypes (decision trees) 287
phenotypic diversity 284
pilot model approach 151
Plasmopara viticola 185
poikilothermic animal 188
population dynamics analysis methods

184
Power Spectral Density (PSD) 302,

312, 315
pre-imaginary phases 186
probability 28
pruning 209
pull back tests 307
push 164

R
Radial-Basis Function (RBF) neural

network 205
Ramped growth 287
Random Sampling Evolutionary Algo-

rithm (RAND) 220
randomized algorithms 22
real-time path planning 69
real-time trajectory 70
regression tree 208
robot soccer system 89
robot’s proximity sensors 107
Robust Evolution Strategies (RES) 265
robustness index 27
root locus 47

S
scheduling algorithm 242
schemata generation algorithm 242
sequential training methods 3
shaker tests 307
simple agents 171
simulation models 198

TLFeBOOK

336 Index

Single Objective Evolutionary Algorithm
(SOEA) 220

single sampling line 223
spectrum analysis 312
splines 205
spread 222
state vector 44
statistical learning theory 200
Strength Pareto Evolutionary Algorithm

(SPEA) 219
strength-to-weight ratio 143
support vector machine (SVM) 200

T
task instances 111
thrust increase 164
thrust reduction 164
training set 201
travelling salesman problem 239
Turbulence Intensities (TI) 302, 313

U
uncertain environments 176

V
variation 281
Vector Evaluated Genetic Algorithm

(VEGA) 220
verification set 201
vibration testing 305

W
wind speed 309

TLFeBOOK

	Computational.Intelligence.In.Control
	Cover

	Table of Contents
	Preface
	SECTION I:
NEURAL
NETWORKS
DESIGN, CONTROL
AND ROBOTICS
APPLICATION
	Chapter I: Designing Neural Network Ensembles by Minimising Mutual Information
	Chapter II: A Perturbation Size- Independent Analysis of Robustness in Neural Networks by Randomized Algorithms
	Chapter III: Helicopter Motion ControlUsing a General RegressionNeural Network
	Chapter IV: A Biologically InspiredNeural Network Approachto Real-Time Map Buildingand Path Planning

	SECTION II: HYBRIDEVOLUTIONARYSYSTEMS FORMODELLING,CONTROLAND ROBOTICSAPPLICATIONS
	Chapter V: Evolutionary Learningof Fuzzy Controlin Robot-Soccer
	Chapter VI: Evolutionary Learning of aBox-Pushing Controller
	Chapter VII: Computational Intelligencefor Modelling and Controlof Multi-Robot Systems
	Chapter VIII: Integrating GeneticAlgorithms and FiniteElement Analyses forStructural Inverse Problems

	SECTION III: FUZZY LOGICANDBAYESIANSYSTEMS
	Chapter IX: On the Modellingof a Human PilotUsing Fuzzy Logic Control
	Chapter X: Bayesian Agenciesin Control

	SECTION IV: MACHINELEARNING,EVOLUTIONARYOPTIMISATIONANDINFORMATIONRETRIEVAL
	Chapter XI: Simulation Model for theControl of Olive FlyBactrocera Oleae UsingArtificial Life Technique
	Chapter XII: Applications of Data-DrivenModelling and MachineLearning in Control of WaterResources
	Chapter XIII: Solving Two Multi-ObjectiveOptimization Problems UsingEvolutionary Algorithm
	Chapter XIV: Flexible Job-Shop SchedulingProblems: Formulation,Lower Bounds, Encodingand Controlled EvolutionaryApproach
	Chapter XV: The Effect of Multi-ParentRecombination on EvolutionStrategies for Noisy ObjectiveFunctions
	Chapter XVI: On Measuring the Attributesof Evolutionary Algorithms:A Comparison of AlgorithmsUsed for InformationRetrieval
	Chapter XVII: Design Wind Speeds UsingFast Fourier Transform:A Case Study

	About the Authors
	Index

